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Non-convex Smooth Optimization

min
x∈Rd

f (x),

where f is twice differentiable, possibly non-convex

Gradient Method. Iterate, k ≥ 0:

xk+1 = xk − 𝛼k∇f (xk)

+ Cheap iterations: 𝒪(d)
+ Convergence from arbitrary x0
− Slow rate

Let the gradient be Lipschitz continuous:

‖∇f (x)−∇f (y)‖ ≤ L1‖x − y‖, ∀x , y ∈ Rd

Then, to find ‖∇f (x̄k)‖ ≤ 𝜀, the method needs

K = 𝒪
(︁
L1(f (x0)−f ⋆)

𝜀2

)︁
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Newton’s Method with Cubic Regularization

2nd -order assumption. Let the Hessian be Lipschitz continuous:

‖∇2f (x)−∇2f (y)‖ ≤ L2‖x − y‖, ∀x , y ∈ Rd

⇒ global upper model of the objective, for H ≥ L2:

f (y) ≤ Ω(x ; y) + H
6 ‖y − x‖3, ∀x , y ∈ Rd ,

where

Ω(x ; y)
def
= f (x) + ⟨∇f (x), y − x⟩+ 1

2⟨∇
2f (x)(y − x), y − x⟩

Cubic Newton [Nesterov-Polyak, 2006].
Iterate, k ≥ 0:

xk+1 = argmin
y∈Rd

{︁
MH(x ; y) ≡ Ω(xk ; y) +

H
6 ‖y − xk‖3

}︁
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Cubic Model

Regularized quadratic model of f (y) at point x ∈ Rd :

MH(x ; y) ≡ Ω(x ; y) + H
6 ‖y − x‖3

H = 0.1

⇒ global progress of the method.
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Theory

xk+1 = argmin
y∈Rd

{︁
MH(xk ; y) ≡ Ω(xk ; y) +

H
6 ‖y − xk‖3

}︁

Theorem. Let H := L2. Then, to find ‖∇f (x̄k)‖ ≤ 𝜀, the Cubic
Newton needs

K = 𝒪
(︁√

L2(f (x0)−f ⋆)

𝜀3/2

)︁
iterations.

▶ For the Gradient Method, we had 𝒪( 1
𝜀2
)

▶ We also have convergence to a second-order stationary point
for the Cubic Newton: ∇2f (x̄k) ⪰ −

√
L2𝜀I

▶ Adaptive strategy for H: ensure f (xk+1) ≤ MH(xk ; xk+1)

[Nesterov-Polyak, 2006; Cartis-Gould-Toint, 2011; Grapiglia-Nesterov, 2017]
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Computation of One Step

Cubic Newton step:

xk+1 = xk −
[︀
∇2f (xk) + 𝜏k I

]︀−1∇f (xk)

where 𝜏k is the solution of the dual

For convex functions we can use Gradient Regularization:

𝜏k =
√︁

H‖∇f (xk )‖
2

[Ueda-Yamashita, 2014; Mishchenko, 2021; D-Nesterov, 2021]

▶ Fast global rates

▶ High arithmetic cost
⇒ this work: Lazy Hessian updates

It improves the total arithmetic cost of CN by a factor
√
d
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Lazy Hessian updates

▶ Idea: use the same Hessian for m ≥ 1 iterations

Appeared first in [Shamanskii, 1967]

[Lampariello-Sciandrone, 2001; Wang-Chen-Du, 2006; Fan, 2013]
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Cubic Newton with Lazy Hessians

Define step of the method with Hessian at some previous point z :

TH(x , z) = argmin
y∈Rd

{︁
⟨∇f (x), y − x⟩

+ 1
2⟨∇

2f (z)(y − x), y − x⟩+ H
6 ‖y − x‖3

}︁

Define
𝜋(k)

def
= k − k modm

Cubic Newton with Lazy Hessians

Iterate, k ≥ 0:
1. Set last snapshot point zk = x𝜋(k)

2. Compute lazy cubic step xk+1 = TH(xk , zk)
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Convergence Rate

Theorem. Let H := 6mL2. Then, to find ‖∇f (x̄)‖ ≤ 𝜀, the
method needs

K = 𝒪
(︁√

mL2(f (x0)−f ⋆)

𝜀3/2

)︁
lazy steps.

▶ Worse than the full Cubic Newton by the factor
√
m

Note: the total number of Hessian updates during these steps is

K
m = 𝒪

(︁√
L2(f (x0)−f ⋆)√

m𝜀3/2

)︁
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Arithmetic Cost

» Choice of m? Optimize the total cost:

Arithmetic complexity = K × GradCost + K
m × HessCost

In many problems: HessCost = d × GradCost

▶ Logistic Regression, Generalized Linear Models
▶ Neural Networks

⇒ optimal choice
m := d

(update the Hessian once every d steps)
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Comparison of the Methods

Total arithmetic complexity

▶ Gradient Method:

𝒪
(︁
L1(f (x0)−f ⋆)

𝜀2

)︁
× GradCost

▶ Full Cubic Newton:

𝒪
(︁√

L2(f (x0)−f ⋆)

𝜀3/2

)︁
× GradCost× d

▶ Lazy Cubic Newton (m = d):

𝒪
(︁√

L2(f (x0)−f ⋆)

𝜀3/2

)︁
× GradCost×

√
d
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Experiment: Soft Max

min
x∈Rd

f (x) := 𝜇 ln
(︁ n∑︀

i=1
exp

(︀ ⟨ai ,x⟩−bi
𝜇

)︀ )︁
≈ max

1≤i≤n

[︀
⟨ai , x⟩ − bi

]︀
.
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Conclusions

▶ Using cubic regularization or gradient regularization for
Newton’s method we can establish global convergence

▶ With lazy Hessian updates we improve the total arithmetic
complexity

Research directions:
▶ Convex optimization
▶ Stochastic methods (we have a follow-up work)
▶ Sparse problems (different schedules of updating the Hessian)

Thank you very much for your attention!
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