Second-Order Optimization with Lazy Hessians

Nikita Doikov

Joint work with El Mahdi Chayti and Martin Jaggi

EPFL, Switzerland

ICML 2023

Non-convex Smooth Optimization

 $\min_{x\in\mathbb{R}^d}f(x),$

where f is twice differentiable, possibly non-convex

Gradient Method. Iterate, $k \ge 0$:

$$x_{k+1} = x_k - \alpha_k \nabla f(x_k)$$

- + Cheap iterations: O(d)
- + Convergence from arbitrary x₀
- Slow rate

Let the gradient be Lipschitz continuous:

$$\|
abla f(x) -
abla f(y)\| \leq L_1 \|x - y\|, \quad \forall x, y \in \mathbb{R}^d$$

Then, to find $\|\nabla f(\bar{x}_k)\| \leq \varepsilon$, the method needs

$$K = \mathcal{O}\left(\frac{L_1(f(x_0) - f^*)}{\varepsilon^2}\right)$$

Newton's Method with Cubic Regularization

 2^{nd} -order assumption. Let the Hessian be Lipschitz continuous:

$$\|
abla^2 f(x) -
abla^2 f(y)\| \le L_2 \|x - y\|, \quad \forall x, y \in \mathbb{R}^d$$

 \Rightarrow global upper model of the objective, for $H \ge L_2$:

$$f(y) \leq \Omega(x;y) + \frac{H}{6} \|y-x\|^3, \quad \forall x, y \in \mathbb{R}^d,$$

where

$$\Omega(x;y) \stackrel{\text{def}}{=} f(x) + \langle \nabla f(x), y - x \rangle + \frac{1}{2} \langle \nabla^2 f(x)(y - x), y - x \rangle$$

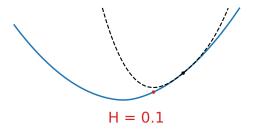
Cubic Newton [Nesterov-Polyak, 2006]. Iterate, $k \ge 0$:

$$x_{k+1} = \operatorname{argmin}_{y \in \mathbb{R}^d} \left\{ M_H(x; y) \equiv \Omega(x_k; y) + \frac{H}{6} \|y - x_k\|^3 \right\}$$

Cubic Model

Regularized quadratic model of f(y) at point $x \in \mathbb{R}^d$:

$$M_H(x;y) \equiv \Omega(x;y) + \frac{H}{6} \|y - x\|^3$$



 \Rightarrow global progress of the method.

Theory

$$x_{k+1} = \operatorname{argmin}_{y \in \mathbb{R}^d} \left\{ M_H(x_k; y) \equiv \Omega(x_k; y) + \frac{H}{6} \|y - x_k\|^3 \right\}$$

Theorem. Let $H := L_2$. Then, to find $\|\nabla f(\bar{x}_k)\| \le \varepsilon$, the Cubic Newton needs

$$K = \mathcal{O}\left(\frac{\sqrt{L_2}(f(x_0) - f^*)}{\varepsilon^{3/2}}\right)$$

iterations.

- For the Gradient Method, we had $\mathcal{O}(\frac{1}{\epsilon^2})$
- ▶ We also have convergence to a second-order stationary point for the Cubic Newton: $\nabla^2 f(\bar{x}_k) \succeq -\sqrt{L_2 \varepsilon} I$

Adaptive strategy for H: ensure $f(x_{k+1}) \le M_H(x_k; x_{k+1})$ [Nesterov-Polyak, 2006; Cartis-Gould-Toint, 2011; Grapiglia-Nesterov, 2017]

Computation of One Step

Cubic Newton step:

$$x_{k+1} = x_k - \left[\nabla^2 f(x_k) + \tau_k I\right]^{-1} \nabla f(x_k)$$

where τ_k is the solution of the dual

For <u>convex functions</u> we can use **Gradient Regularization**:

$$\tau_k = \sqrt{\frac{H \|\nabla f(\mathbf{x}_k)\|}{2}}$$

[Ueda-Yamashita, 2014; Mishchenko, 2021; D-Nesterov, 2021]

Fast global rates

- High arithmetic cost
- ⇒ this work: Lazy Hessian updates

It improves the total arithmetic cost of CN by a factor \sqrt{d}

Lazy Hessian updates

• Idea: use the same Hessian for $m \ge 1$ iterations

Lazy Hessian Updates: compute new Hessian once per m iterations.

Hessians:	$ abla^2 f(\mathbf{x}_0)$	$\stackrel{\text{reuse Hessian}}{\longrightarrow}$			$ abla^2 f(\mathbf{x}_m)$	$\stackrel{\text{reuse Hessian}}{\longrightarrow}$	
Gradients:	$ abla f(\mathbf{x}_0)$	${oldsymbol abla} f({ m x}_1)$		$ abla f(\mathrm{x}_{m-1})$	$ abla f(\mathrm{x}_m)$	$ abla f(\mathrm{x}_{m+1})$	

Appeared first in [Shamanskii, 1967]

[Lampariello-Sciandrone, 2001; Wang-Chen-Du, 2006; Fan, 2013]

Cubic Newton with Lazy Hessians

Define step of the method with Hessian at some previous point z:

$$T_{H}(x,z) = \operatorname{argmin}_{y \in \mathbb{R}^{d}} \left\{ \langle \nabla f(x), y - x \rangle + \frac{1}{2} \langle \nabla^{2} f(z)(y - x), y - x \rangle + \frac{H}{6} \|y - x\|^{3} \right\}$$

Define

$$\pi(k) \stackrel{\text{def}}{=} k - k \mod m$$

Cubic Newton with Lazy Hessians

Iterate, $k \ge 0$:

- **1.** Set last snapshot point $z_k = x_{\pi(k)}$
- **2.** Compute lazy cubic step $x_{k+1} = T_H(x_k, z_k)$

Convergence Rate

Theorem. Let $H := 6mL_2$. Then, to find $\|\nabla f(\bar{x})\| \le \varepsilon$, the method needs

$$K = \mathcal{O}\left(\frac{\sqrt{mL_2}(f(x_0) - f^*)}{\varepsilon^{3/2}}\right)$$

lazy steps.

• Worse than the full Cubic Newton by the factor \sqrt{m} Note: the total number of Hessian updates during these steps is

$$\frac{K}{m} = \mathcal{O}\left(\frac{\sqrt{L_2}(f(x_0) - f^*)}{\sqrt{m}\varepsilon^{3/2}}\right)$$

Arithmetic Cost

» Choice of m? Optimize the total cost:

Arithmetic complexity = $K \times \text{GradCost} + \frac{K}{m} \times \text{HessCost}$

In many problems: |HessCost = $d \times GradCost$

- Logistic Regression, Generalized Linear Models
- Neural Networks
- \Rightarrow optimal choice

$$m := d$$

(update the Hessian once every d steps)

Total arithmetic complexity

Gradient Method:

$$\mathcal{O}\Big(rac{L_1(f(x_0)-f^\star)}{arepsilon^2}\Big) imes extsf{GradCost}$$

Full Cubic Newton:

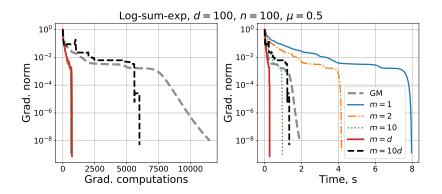
$$\mathcal{O}\!\left(rac{\sqrt{L_2}(f(x_0)-f^\star)}{arepsilon^{3/2}}
ight) imes ext{GradCost} imes rac{d}{d}$$

Lazy Cubic Newton (m = d):

$$\mathcal{O}\!\left(rac{\sqrt{L_2}(f(x_0)-f^\star)}{arepsilon^{3/2}}
ight) imes extsf{GradCost} imes \sqrt{d}$$

Experiment: Soft Max

$$\min_{x\in\mathbb{R}^d}f(x) := \mu \ln \left(\sum_{i=1}^n \exp\left(\frac{\langle a_i,x\rangle-b_i}{\mu}\right)\right) \approx \max_{1\leq i\leq n} \left[\langle a_i,x\rangle-b_i\right].$$



Conclusions

- Using cubic regularization or gradient regularization for Newton's method we can establish global convergence
- With lazy Hessian updates we improve the total arithmetic complexity

Research directions:

- Convex optimization
- Stochastic methods (we have a follow-up work)
- Sparse problems (different schedules of updating the Hessian)

Thank you very much for your attention!