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Non-convex Smooth Optimization

in £(x),
;gﬁb (X)

where f is twice differentiable, possibly non-convex
Gradient Method. lterate, k > 0:
Xkr1 = Xk — axVF(x)
+ Cheap iterations:  O(d)
+ Convergence from arbitrary xg
— Slow rate
Let the gradient be Lipschitz continuous:
IVF(x) = Vi)l < Lllx—yl, V¥xyeR?
Then, to find ||[Vf(xk)|| < e, the method needs
K = @(Ll(f({oz)—f*)>
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Newton’s Method with Cubic Regularization
2"9_order assumption. Let the Hessian be Lipschitz continuous:
IV2£(x) = V2 < Lallx—yll,  Vx,y € R
= global upper model of the objective, for H > Ly:
fly) < QGay)+&lly —xI?,  vx,y €RY,
where

Qxiy) & F(x) + (VF(x),y = x) + HV2F(x)(y = x),y — %)

Cubic Newton [Nesterov-Polyak, 2006].
Iterate, kK > O:

xern = argmin Mu(xiy) = Q0iy) + Hlly =l }
y€ERY
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Cubic Model

Regularized quadratic model of f(y) at point x € RY:

Mu(xiy) = Qx;y)+ 2y —x|*

= global progress of the method.
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Theory

s = argmin{ My(xiy) = Qi)+ §lly -}
yeR

Theorem. Let H := Ly. Then, to find ||[Vf(x«)| < ¢, the Cubic

Newton needs
K — 0(\/5(f(><o)—f*))

e3/2

iterations.

> For the Gradient Method, we had O()

o

» We also have convergence to a second-order stationary point
for the Cubic Newton: V2f(xx) = —+/Lael

» Adaptive strategy for H: ensure f(xx+1) < My(xki Xk41)
[Nesterov-Polyak, 2006; Cartis-Gould-Toint, 2011; Grapiglia-Nesterov, 2017]
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Computation of One Step
Cubic Newton step:
X4l = Xk — [sz(xk) + Tkl]_1Vf(xk)

where 7 is the solution of the dual

For convex functions we can use Gradient Regularization:

f
. I

[Ueda-Yamashita, 2014; Mishchenko, 2021; D-Nesterov, 2021]
» Fast global rates

» High arithmetic cost
= this work: Lazy Hessian updates

It improves the total arithmetic cost of CN by a factor v/d
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Lazy Hessian updates

» |dea: use the same Hessian for m > 1 iterations

Lazy Hessian Updates: compute new Hessian once per m iterations.

Hessians:

Gradients:

V2£(xo) reustﬁa}ssian V2 (x,m) reuseﬁz)sSian
Vf(xo) | Vf(x1) VFxm-1)| VF&m) | VI Ems1)

Appeared first in [Shamanskii, 1967]

[Lampariello-Sciandrone, 2001; Wang-Chen-Du, 2006; Fan, 2013]

7/13



Cubic Newton with Lazy Hessians

Define step of the method with Hessian at some previous point z:

Th(x,z) = argmin{ (VF(x),y —x)
yERd

+ BV = x)y = x) + Hlly — x|? |

Define
m(k) = k—kmodm

Cubic Newton with Lazy Hessians

Iterate, kK > 0:
1. Set last snapshot point zx = X;())
2. Compute lazy cubic step xx+1 = TH(xk, 2k)
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Convergence Rate

Theorem. Let H := 6mL,. Then, to find [|[Vf(X)| < ¢, the

method needs
K — O<\/mL2(f(x0)—f*))

2372

lazy steps.

» Worse than the full Cubic Newton by the factor /m
Note: the total number of Hessian updates during these steps is

oLl 1)

3IX
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Arithmetic Cost
» Choice of m? Optimize the total cost:

Arithmetic complexity = K X GradCost + % X HessCost

In many problems: |HessCost = d x GradCost

» Logistic Regression, Generalized Linear Models

» Neural Networks

= optimal choice

m = d

(update the Hessian once every d steps)
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Comparison of the Methods

Total arithmetic complexity
» Gradient Method:
O(%) X GradCost
» Full Cubic Newton:
O(%) x GradCost x d
» Lazy Cubic Newton (m = d):

O(%) X GradCost X \/8
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Experiment: Soft Max
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Conclusions

» Using cubic regularization or gradient regularization for
Newton's method we can establish global convergence

» With lazy Hessian updates we improve the total arithmetic
complexity

Research directions:
» Convex optimization
» Stochastic methods (we have a follow-up work)

» Sparse problems (different schedules of updating the Hessian)

Thank you very much for your attention!
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