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Problem and Motivation

We want to solve unconstrained minimization problem:

min
x∈Rd

f (x)

• f is differentiable and can be non-convex
• First-order gradient methods: cheap to implement, but slow rates

• Second-order methods (Newton’s Method): fast rates but expensive

This work: we propose to use a previously seen Hessian for several
iterations (lazy Hessian updates):

• Provable improvement of the total arithmetic complexity

Newton’s Method with Cubic Regularization

Assume that the Hessian is Lipschitz Continuous:

∥∇2f (x)−∇2f (y)∥ ≤ L∥x − y∥, ∀x , y ∈ Rd

⇒ global upper model of the objective, for H ≥ L:

f (y) ≤ Ω(x ; y) + H
6∥y − x∥3, ∀x , y ∈ Rd ,

where

Ω(x ; y)
def
= f (x) + ⟨∇f (x), y − x⟩ + 1

2⟨∇
2f (x)(y − x), y − x⟩

Cubic Newton Method [1]. Iterate, k ≥ 0 :

xk+1 = argmin
y∈Rd

{
MH(xk; y) ≡ Ω(xk; y) +

H
6∥y − xk∥3

}
Theorem. Let H := L. Then, to find ∥∇f (x̄k)∥ ≤ ε, the Cubic Newton
needs

K = O
(√

L(f (x0)−f ⋆)
ε3/2

.
)

• For the Gradient Method, we need O(1/ε2) iterations

• We also can prove convergence to a second-order stationary point
for the Cubic Newton: ∇2f (x̄k) ⪰ −

√
LεI

• Adaptive strategy for H : ensure f (xk+1) ≤ MH(xk; xk+1) [1, 2] — the
method becomes universal, adapting automatically to the most
appropriate problem class [3, 4]

Solving the Cubic Subproblem

How to compute one step? h+ = argmin
h∈Rd

{
⟨g , h⟩ + 1

2⟨Ah, h⟩ +
H
6∥h∥

3
}

• Step 1: compute factorization of A = UΛU⊤, where U is
orthonormal basis UU⊤ = I , and Λ is diagonal or tridiagonal —
O(d 3) arithmetic operations (the most expensive part)

• Step 2: solve the dual problem (concave univariate maximization):

max
τ∈R : τ>[−λmin]+

{
−1

2⟨(Λ+ τ I )−1ḡ , ḡ⟩− 24

3H2τ
3
}

⇒ h+ = −
(
A + τ ⋆I

)−1
g

Lazy Hessian Updates

Main Idea: use the same Hessian for m ≥ 1 iterations

• Appeared first in [5]

Algorithm: Cubic Newton with Lazy Hessians

Define step of the method with Hessian at some previous point z :

TH(x , z)
def
= argmin

y∈Rd

{
⟨∇f (x), y − x⟩

+ 1
2⟨∇

2f (z)(y − x), y − x⟩ + H
6∥y − x∥3

}
Define π(k)

def
= k − k modm

Cubic Newton with Lazy Hessians

Iterate, k ≥ 0:

1. Set last snapshot point zk = xπ(k)
2. Compute lazy cubic step xk+1 = TH(xk, zk)

Theory: Convergence Rate

Theorem. Let H := 6mL. Then, to find ∥∇f (x̄)∥ ≤ ε, the method needs

K = O
(√

mL(f (x0)−f ⋆)
ε3/2

)
• Worse than the full Cubic Newton by the factor

√
m

Note: the total number of Hessian updates during these steps is

K
m = O

(√
L(f (x0)−f ⋆)√

mε3/2

)
Choice of m?

≫ Optimize the total cost:

Arithmetic complexity = K × GradCost + K
m × HessCost

In many problems: HessCost = d × GradCost ⇒ m := d

• Generalized Linear Models (Logistic Regression)
• Log-sum-exp (Soft Max)
• Neural Networks: computing ∇2f (x)h is the same cost as ∇f (x), for
any x , h, by using backpropagation. Then

∇2f (x) =
[
∇2f (x)e1

∣∣ . . . ∣∣∇2f (x)ed
]

Total Arithmetic Complexity

• Gradient Method:

O
(
L1(f (x0)−f ⋆)

ε2

)
× GradCost

• Full Cubic Newton:

O
(√

L2(f (x0)−f ⋆)
ε3/2

)
× GradCost× d

• Lazy Cubic Newton (m := d):

O
(√

L2(f (x0)−f ⋆)
ε3/2

)
× GradCost×

√
d

This provably improves the total arithmetic complexity of the Cubic

Newton by factor
√
d

Locally, we also have superlinear convergence

For convex problems, we can use the Gradient Regularization technique
with lazy Hessian updates, achieving the same global rates:

TH(x , z) = x −
(
∇2f (z) +

√
H∥∇f (x)∥I

)−1
∇f (x)

Experiment: Soft Max

min
x∈Rd

f (x) = µ ln
( n∑

i=1

exp
(⟨ai , x⟩ − bi

µ

))
≈ max

1≤i≤n

[
⟨ai , x⟩ − bi

]
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