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Problem and Motivation Lazy Hessian Updates Total Arithmetic Complexity
We want to solve unconstrained minimization problem: Main ldea: use the same Hessian for m > 1 iterations e Gradient Method:
min f(x Ll(f(Xo)—f*))
xeRd ( ) Lazy Hessian Updates: compute new Hessian once per m iterations. O( g? x GradCost

e Full Cubic Newton:

e f is differentiable and can be non-convex Hessians: | V2f(xo) reuse Hessian V2 f(Xm) reuse Hessian O(\/L_z(f(xO)—f*)) < CradCost x d
e First-order gradient methods: cheap to implement, but slow rates | e3/2
e Second-order methods (Newton's Method): fast rates but expensive Gradients:| Vf(xo) | VF(x1)| ... | VIxm-1)| VI(xm) | VF(xXm1) e Lazy Cubic Newton (m := d):
This work: we propose to use a previously seen Hessian for several o (’)(\/5(2(372)_'(*)) x GradCost X v/d
iterations (lazy Hessian updates): * Appeared first in [3]

This provably improves the total arithmetic complexity of the Cubic
Algorithm: Cubic Newton with Lazy Hessians Newton by factor v/d

Newton’s Method with Cubic Regularization | | | | | Locally, we also have superlinear convergence
Define step of the method with Hessian at some previous point z:

¢ Provable improvement of the total arithmetic complexity

For convex problems, we can use the Gradient Regularization technique

Assume that the Hessian is Lipschitz Continuous: Th(x, z) g argmin{ (VF(x),y — x) with lazy Hessian updates, achieving the same global rates:
, w2 < B d yeRe -1
IVF(x) = V)l < Lix=yl, V¥xyeR £ UV = x)y — x) + Hlly — x| } Th(x,z) = x — (v2f(z) + \/HHVf(x)HI) V(x)
= global upper model of the objective, for H > L:
: def
. Hi. 113 d Define (k) = k — kmod m
() < Q)+ lly = xIP. - Vaoy R kK | | Experiment: Soft Max
where Cubic Newton with Lazy Hessians
o lt t y k > OZ
Qxiy) E F(x) + (VF(x),y = x) + HIH()(y = %),y = %) e .
1. Set last snapshot point zx = Xk | n (a;, x) — by
Cubic Newton Method [1]. Iterate, k > 0: 2. Compute lazy cubic step xx11 = Tp(xx, zk) A flx) = ,uln(z exp( 0 )) ~ 1r2%xn[<a,-,x> — b

=1

_ - . _ . H 3
Xk+1 = argmm{ Mu(xi;y) = 2(xy) + E”y — X|| } : Log-sum-exp, d =100, n=100, u=0.5
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¢ For the Gradient Method, we need O(1/¢°) iterations _ _ e Worse than the full Cubic Newton by the factor /m Ch : \ Cha
® Ve also can prove convergence to a second-order stationary point Note: the total number of Hessian updates during these steps is 10-8 ' MY 10-8
for the Cubic Newton: V?f(x,) = —+/Lel T Oa)—) !
. K _ xp)—f~
® Adaptlve Strategy fOI’ H: ensure f(Xk+]_) S MH(Xk,Xk+]_) []., 2] I the m O( \/m23/2 ) 0 25'00 50'00 75'00 10(')00 0 2 4 6 8
method becomes universal, adapting automatically to the most Grad. computations Time, s

appropriate problem class [3, 4]
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