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Non-convex Optimization

min f(x),

x€RY
where f is twice differentiable, possibly non-convex.
Gradient Method. lterate, k > 0:
Xk+1 = Xk—Odef(Xk)

+ Cheap iterations: O(d)

+ Convergence from arbitrary xg

— Slow rate
Let the gradient be Lipschitz continuous:

IVE(x) = VI < Lilx—yll,  VYxyeR

Then, to find |V (Xk)| < ¢, the method needs
K — O(L1(f(>3)—f*)>

iterations. 2/20



Newton’s Method with Cubic Regularization
New assumption. Let the Hessian be Lipschitz continuous:
IV2£(x) = V2 < Lallx—yll,  Vx,y €R%
= global upper model of the objective, for H > Ly:
fly) < QGay)+&lly —xI?,  vx,y €RY,

where
Qxiy) )+ (VF(x),y = x) + (V2F(x)(y = x),y — ).

Cubic Newton [Nesterov-Polyak, 2006].
Iterate, kK > O:

xern = argmin Mu(xiy) = Q0iy) + Hlly =l }
y€ERY
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Cubic Model

Regularized quadratic model of f(y) at point x € RY:

Mu(xiy) = Qx;y)+ 2y —x|*

= global progress of the method.
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Theory

s = argmin{ My(xiy) = Qi)+ §lly -}
yeR

Theorem. Let H := Ly. Then, to find ||[Vf(x«)| < ¢, the Cubic
Newton needs - .
K — O<ﬁ(6(3);°2)_ ))

iterations.

» For the Gradient Method, we had (’)(Ei)

» We also can prove convergence to a second-order stationary
point for the Cubic Newton: V2f (%) = —+/Loel.

» Adaptive strategy for H: ensure f(xx+1) < My(xki Xk41)
[Nesterov-Polyak, 2006; Cartis-Gould-Toint, 2011; Grapiglia-Nesterov, 2017]
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Solving the Subproblem

How to compute one step?

mt = argmin{ (g, h) + 1(Ah, h) + £ 0|3
heRd
Step 1: compute factorization of A= AT € RIx9:
A = UAUT,
where U € R9%? is orthonormal basis: UUT =/, and A is

diagonal or tridiagonal — O(d®) arithmetic operations
Step 2: solve

P = min{(@.h) + 3(Anh) + 2 h]7)
heRd
using duality:
B . 1 —1z z\_ 2* 3
P 0= max {88 - G
T>[—>\min]+

concave maximization of univariate function — O(d) operations
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Computation of One Step

» Cubic Newton step:

xt = argmin{ My(x; y) }
y€ERd

-1
= x — (sz(x)+Tl> V£(x),
where 7 is the solution of the dual. We have 7 = 4||x* — x].
> Let f be convex. Then,
def ry—1
= xt=x| = (V) + FN TV < AV

_Hr_ [HIViG]
2 = 2 '
Gradient Regularization. [Ueda-Yamashita, 2014; Mishchenko, 2021;
D-Nesterov, 2021]:

xt = x—(sz(x)—l—\/wl)_lVf(x)

» One matrix inversion; fast global rates

Hence, we have an upper bound: |7
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Newton’s Method: conclusions
Classic Newton's step:
i1 = xe— [V(x)] V()
Two major issues:

» No global convergence = Cubic Regularization:

Xkil = Xk — [sz(xk) —l—TkI]_lVf(Xk)

where 74 is computed at each step by univariate maximization.

For convex functions we can use Gradient Regularization:
[ H||IVf (x
T = Il 2( 1

» High arithmetic cost: O(d?)
= this work: Lazy Hessian updates

It improves the total arithmetic cost of CN by a factor vd
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Lazy Hessian updates

» |dea: use the same Hessian for m > 1 iterations.

Lazy Hessian Updates: compute new Hessian once per m iterations.

Hessians: v2 f(xo) reustﬂe}ssian v2 f (Xm) reuse Hessian
Gradients: | Vf(xo) | VF(x1)| .-+ | VF(xm-1)| VF(Em) | VF(Xm+t1)

Appeared first in [Shamanskii, 1967]
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Cubic Newton with Lazy Hessians

Define step of the method with Hessian at some previous point z:

Th(x,z) = argmin{ (VF(x),y —x)
y€ERd

FHVRH — Xy )+ By}

def

Define (k) k — kmod m.

Cubic Newton with Lazy Hessians

Iterate, kK > 0:
1. Set last snapshot point zx = x(x)
2. Compute lazy cubic step xx+1 = Th(xk, 2«)
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Convergence Rate

Theorem. Let H :=6mL,. Then, to find |Vf(X)| < ¢, the
method needs

23/2

K = o(YmEie-r)

lazy steps.
» Worse than the full Cubic Newton by the factor /m.

Note: the total number of Hessian updates during these steps is

o(*E58=")

31X
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Arithmetic Cost

» Choice of m? Optimize the total cost:

Arithmetic complexity = K x GradCost + £ x HessCost

m

In many problems: |HessCost = d X GradCost
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Example

> Let f(x) = > v({ai, x)) (includes logistic regression)
Then,
Vf(x) = ATs(x), where [s(x)]i = %gp’((a,-,x>),
V2f(x) = ATD(x)A, where [D(x)]. = ¢"((a;,x).
Hence
GradCost = nz(A)+d? ~ HessCost = d-nz(A)+ d3.

» Neural Networks: computing V2f(x)h is the same cost as
V£(x), for any x, h.

V2f(x) = |:V2f(X)el| \V2f(X)ed}v
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Arithmetic Cost

» Choice of m? Optimize the total cost:

Arithmetic complexity = K x GradCost + g X HessCost

In many problems: |HessCost = d X GradCost

Substituting, we get

Arithmetic complexity
= (’)( (ﬁ—l— ﬁ) . W) X GradCost — min

m
Optimal (update the Hessian once per d steps).
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Gradient Regularization and Lazy Hessians

Let f be convex. Then we can perform simpler iterations.
Regularized Newton with Lazy Hessians

Iterate, kK > 0:
1. Set last snapshot point zx = x(x)
2. Set regularization parameter 7, = \/H||Vf(xk)||

3. Compute lazy Newton step: .
X1 = xk — (V2F(zi) + 1) "V (xi)

Theorem. Let H = 3ml;. The same global complexity as for the
Cubic Newton, with an additive logarithmic term:

53/2 €

K = O(YEEllelr) 4y I97Col).
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Adaptive Scheme

Algorithm 1 Adaptive Cubic Newton with Lazy Hessians

Initialization: xg € RY, m > 1. Fix some Hg > 0.
1: fort=0,1,... do

2: Compute snapshot Hessian V2f (x¢m)

3: do

4: Update H; =2 - H;

5: fori=1,...,mdo

6: Compute lazy cubic step x¢myi = T, (Xem+i—1, Xtm)
7 until Fxam) — FOmim) > Sk ST [V Oam) |2

8  Set Hyp1 =1 Hy

» No need to know any parameters
» Makes the methods universal (working properly on problem
classes with Holder continuous derivatives and uniformly
convex objectives)
[Grapiglia-Nesterov, 2017; D-Nesterov, 2019; D-Mishchenko-Nesterov, 2022]
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Local Superlinear Convergence

> Let f be strongly convex: V2f(x) = ul

2

» Let initial gradient be small enough: ||V (xp)|| < T“H)

Theorem. Local superlinear convergence for the lazy Hessian
updates:

2 2(1 2)7(k) (14 (k mod 2
IVl < sateram - (3) (1+m/2)79(1+(k mod m) /2)

9y
def
where m(k) = k — kmod m.
» m=1 = local quadratic rate of the classic Newton

» m > 1 [Shamanskii, 1967]
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Experiment: Soft Max

n
. . _b
min f(x) = In< exp ({2X)=bi ) ~ max |{a;,x) — b;|.
min f(x) = uin( 35 exp(222) max [{a;, ) — b]
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Comparison of the Methods

Total arithmetic complexity
» Gradient Method:
O(%) X GradCost
» Full Cubic Newton:
O(%) x GradCost x d
» Lazy Cubic Newton (m = d):

O(%) X GradCost X \/8
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Conclusions

» Using cubic regularization or gradient regularization for
Newton's method we can establish global convergence

» With lazy Hessian updates we improve the total arithmetic
complexity

Research directions:
» Convex optimization
» Stochastic methods (we have a follow-up work)

» Sparse problems (different schedules of updating the Hessian)

Thank you very much for your attention!
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