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Non-convex Optimization

min
x∈Rd

f (x),

where f is twice differentiable, possibly non-convex.

Gradient Method. Iterate, k ≥ 0:

xk+1 = xk − 𝛼k∇f (xk)

+ Cheap iterations: 𝒪(d)
+ Convergence from arbitrary x0
− Slow rate

Let the gradient be Lipschitz continuous:

‖∇f (x)−∇f (y)‖ ≤ L1‖x − y‖, ∀x , y ∈ Rd .

Then, to find ‖∇f (x̄k)‖ ≤ 𝜀, the method needs

K = 𝒪
(︁
L1(f (x0)−f ⋆)

𝜀2

)︁
iterations. 2 / 20



Newton’s Method with Cubic Regularization

New assumption. Let the Hessian be Lipschitz continuous:

‖∇2f (x)−∇2f (y)‖ ≤ L2‖x − y‖, ∀x , y ∈ Rd .

⇒ global upper model of the objective, for H ≥ L2:

f (y) ≤ Ω(x ; y) + H
6 ‖y − x‖3, ∀x , y ∈ Rd ,

where

Ω(x ; y)
def
= f (x) + ⟨∇f (x), y − x⟩+ 1

2⟨∇
2f (x)(y − x), y − x⟩.

Cubic Newton [Nesterov-Polyak, 2006].
Iterate, k ≥ 0:

xk+1 = argmin
y∈Rd

{︁
MH(x ; y) ≡ Ω(xk ; y) +

H
6 ‖y − xk‖3

}︁
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Cubic Model

Regularized quadratic model of f (y) at point x ∈ Rd :

MH(x ; y) ≡ Ω(x ; y) + H
6 ‖y − x‖3

H = 0.1

⇒ global progress of the method.
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Theory

xk+1 = argmin
y∈Rd

{︁
MH(xk ; y) ≡ Ω(xk ; y) +

H
6 ‖y − xk‖3

}︁

Theorem. Let H := L2. Then, to find ‖∇f (x̄k)‖ ≤ 𝜀, the Cubic
Newton needs

K = 𝒪
(︁√

L2(f (x0)−f ⋆)

𝜀3/2

)︁
iterations.

▶ For the Gradient Method, we had 𝒪( 1
𝜀2
)

▶ We also can prove convergence to a second-order stationary
point for the Cubic Newton: ∇2f (x̄k) ⪰ −

√
L2𝜀I .

▶ Adaptive strategy for H: ensure f (xk+1) ≤ MH(xk ; xk+1)

[Nesterov-Polyak, 2006; Cartis-Gould-Toint, 2011; Grapiglia-Nesterov, 2017]
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Solving the Subproblem

How to compute one step?

h+ = argmin
h∈Rd

{︁
⟨g , h⟩+ 1

2⟨Ah, h⟩+
H
6 ‖h‖

3
}︁

Step 1: compute factorization of A = A⊤ ∈ Rd×d :

A = UΛU⊤,

where U ∈ Rd×d is orthonormal basis: UU⊤ = I , and Λ is
diagonal or tridiagonal — 𝒪(d3) arithmetic operations
Step 2: solve

P⋆ = min
h∈Rd

{︁
⟨ḡ , h⟩+ 1

2⟨Λh, h⟩+
H
6 ‖h‖

3
}︁

using duality:

P⋆ = D⋆ = max
𝜏∈R s.t.

𝜏>[−𝜆min]+

{︁
−1

2⟨(Λ + 𝜏 I )−1ḡ , ḡ⟩ − 24

3H2 𝜏
3
}︁

concave maximization of univariate function — 𝒪̃(d) operations
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Computation of One Step

▶ Cubic Newton step:
x+ = argmin

y∈Rd

{︁
MH(x ; y)

}︁
= x −

(︁
∇2f (x) + 𝜏 I

)︁−1
∇f (x),

where 𝜏 is the solution of the dual. We have 𝜏 = H
2 ‖x

+ − x‖.
▶ Let f be convex. Then,
r

def
= ‖x+ − x‖ = ‖

(︀
∇2f (x) + Hr

2 I
)︀−1∇f (x)‖ ≤ 2

Hr ‖∇f (x)‖

Hence, we have an upper bound: 𝜏 =
Hr

2
≤

√︂
H‖∇f (x)‖

2
.

Gradient Regularization. [Ueda-Yamashita, 2014; Mishchenko, 2021;
D-Nesterov, 2021]:

x+ = x −
(︁
∇2f (x) +

√︁
H‖∇f (x)‖

2 I
)︁−1

∇f (x)

▶ One matrix inversion; fast global rates
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Newton’s Method: conclusions

Classic Newton’s step:

xk+1 = xk −
[︀
∇2f (xk)

]︀−1∇f (xk)

Two major issues:

▶ No global convergence ⇒ Cubic Regularization:

xk+1 = xk −
[︀
∇2f (xk) + 𝜏k I

]︀−1∇f (xk)

where 𝜏k is computed at each step by univariate maximization.

For convex functions we can use Gradient Regularization:

𝜏k =
√︁

H‖∇f (xk )‖
2 .

▶ High arithmetic cost: 𝒪(d3)

⇒ this work: Lazy Hessian updates

It improves the total arithmetic cost of CN by a factor
√
d
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Lazy Hessian updates

▶ Idea: use the same Hessian for m ≥ 1 iterations.

Appeared first in [Shamanskii, 1967]
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Cubic Newton with Lazy Hessians

Define step of the method with Hessian at some previous point z :

TH(x , z) = argmin
y∈Rd

{︁
⟨∇f (x), y − x⟩

+ 1
2⟨∇

2f (z)(y − x), y − x⟩+ H
6 ‖y − x‖3

}︁

Define 𝜋(k)
def
= k − k modm.

Cubic Newton with Lazy Hessians

Iterate, k ≥ 0:
1. Set last snapshot point zk = x𝜋(k)

2. Compute lazy cubic step xk+1 = TH(xk , zk)
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Convergence Rate

Theorem. Let H := 6mL2. Then, to find ‖∇f (x̄)‖ ≤ 𝜀, the
method needs

K = 𝒪
(︁√

mL2(f (x0)−f ⋆)

𝜀3/2

)︁
lazy steps.

▶ Worse than the full Cubic Newton by the factor
√
m.

Note: the total number of Hessian updates during these steps is

K
m = 𝒪

(︁√
L2(f (x0)−f ⋆)√

m𝜀3/2 .
)︁
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Arithmetic Cost

» Choice of m? Optimize the total cost:

Arithmetic complexity = K × GradCost + K
m × HessCost

In many problems: HessCost = d × GradCost
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Example

▶ Let f (x) = 1
n

n∑︀
i=1

𝜙(⟨ai , x⟩) (includes logistic regression)

Then,

∇f (x) = A⊤s(x), where
[︀
s(x)

]︀
i
= 1

n𝜙
′(⟨ai , x⟩),

∇2f (x) = A⊤D(x)A, where
[︀
D(x)

]︀
ii

= 1
n𝜙

′′
(⟨ai , x).

Hence

GradCost = nz (A) + d2, HessCost = d · nz (A) + d3.

▶ Neural Networks: computing ∇2f (x)h is the same cost as
∇f (x), for any x , h.

∇2f (x) =
[︁
∇2f (x)e1

⃒⃒
. . .

⃒⃒
∇2f (x)ed

]︁
,
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Arithmetic Cost

» Choice of m? Optimize the total cost:

Arithmetic complexity = K × GradCost + K
m × HessCost

In many problems: HessCost = d × GradCost

Substituting, we get

Arithmetic complexity

= 𝒪
(︂(︁√

m + d√
m

)︁
·
√
L2(f (x0)−f ⋆)

𝜀3/2

)︂
× GradCost → min

m

Optimal m := d (update the Hessian once per d steps).
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Gradient Regularization and Lazy Hessians

Let f be convex. Then we can perform simpler iterations.

Regularized Newton with Lazy Hessians

Iterate, k ≥ 0:
1. Set last snapshot point zk = x𝜋(k)

2. Set regularization parameter 𝜏k =
√︀
H‖∇f (xk)‖

3. Compute lazy Newton step:
xk+1 = xk −

(︀
∇2f (zk) + 𝜏k I

)︀−1∇f (xk)

Theorem. Let H = 3mL2. The same global complexity as for the
Cubic Newton, with an additive logarithmic term:

K = 𝒪
(︁√

mL2(f (x0)−f ⋆)

𝜀3/2 + ln ‖∇f (x0)‖
𝜀

)︁
.
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Adaptive Scheme

Algorithm 1 Adaptive Cubic Newton with Lazy Hessians
Initialization: x0 ∈ Rd , m ≥ 1. Fix some H0 > 0.
1: for t = 0, 1, . . . do
2: Compute snapshot Hessian ∇2f (xtm)
3: do
4: Update Ht = 2 · Ht

5: for i = 1, . . . ,m do
6: Compute lazy cubic step xtm+i = THt (xtm+i−1, xtm)

7: until f (xtm)− f (xtm+m) ≥ 1√
Ht

∑︀m
i=1 ‖∇f (xtm+i )‖

3/2
*

8: Set Ht+1 = 1
4 · Ht

▶ No need to know any parameters
▶ Makes the methods universal (working properly on problem

classes with Hölder continuous derivatives and uniformly
convex objectives)

[Grapiglia-Nesterov, 2017; D-Nesterov, 2019; D-Mishchenko-Nesterov, 2022]
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Local Superlinear Convergence

▶ Let f be strongly convex: ∇2f (x) ⪰ 𝜇I

▶ Let initial gradient be small enough: ‖∇f (x0)‖ ≤ 𝜇2

24(3L2+4H)

Theorem. Local superlinear convergence for the lazy Hessian
updates:

‖∇f (xk)‖ ≤ 𝜇2

22(3L2+4H)
·
(︀1

2

)︀2(1+m/2)𝜋(k)(1+(k modm)/2)
,

where 𝜋(k)
def
= k − k modm.

▶ m = 1 ⇒ local quadratic rate of the classic Newton
▶ m ≥ 1 [Shamanskii, 1967]
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Experiment: Soft Max

min
x∈Rd

f (x) := 𝜇 ln
(︁ n∑︀

i=1
exp

(︀ ⟨ai ,x⟩−bi
𝜇

)︀ )︁
≈ max

1≤i≤n

[︀
⟨ai , x⟩ − bi

]︀
.
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Comparison of the Methods

Total arithmetic complexity

▶ Gradient Method:

𝒪
(︁
L1(f (x0)−f ⋆)

𝜀2

)︁
× GradCost

▶ Full Cubic Newton:

𝒪
(︁√

L2(f (x0)−f ⋆)

𝜀3/2

)︁
× GradCost× d

▶ Lazy Cubic Newton (m = d):

𝒪
(︁√

L2(f (x0)−f ⋆)

𝜀3/2

)︁
× GradCost×

√
d
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Conclusions

▶ Using cubic regularization or gradient regularization for
Newton’s method we can establish global convergence

▶ With lazy Hessian updates we improve the total arithmetic
complexity

Research directions:
▶ Convex optimization
▶ Stochastic methods (we have a follow-up work)
▶ Sparse problems (different schedules of updating the Hessian)

Thank you very much for your attention!
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