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Problem
Two black-box convex functions:

mxin[F(X) = f(x)+¢(x) (*)

» f is differentiable (sufficiently smooth)
» ¢ : R" — RU{+o0} is a proper closed convex function

In this talk: we show that the main cost of solving () is in .

» Assume we can solve problems with a quadratic smooth part:
min [ %(Ax, x) —(b,x) + w(x)}
X
Main Theorem. For solving (), it is enough to solve the
quadratic problem
O(MD -In %) times.

NB: No strong/uniform convexity needed!

2/25



Problem Classes

Complexity of the gradient methods:
» Bounds on the second derivative
For example, Lipschitz gradient:

0 < V?(x) = Lil, Vx
or, Relative smoothness:
aV2d(x) = V?f(x) = BV2d(x), Vx
[Bauschke-Bolte-Teboulle, 2016; Van Nguyen, 2017; Lu-Freud-Nesterov, 2018]

Complexity of the second-order methods:
» Bounds on the third derivative!

Self-Concordant functions [Nesterov-Nemirovski, 1994]:
V3 (), u,u] < My (V2F(X)u, u)3/2, Vx, u

» Affine-invariant
> Efficiency of the damped Newton method for logarithmic
barriers, e.g. f(x) = —Inx

3/25



Lipschitz Hessian and Lipschitz Third Derivative
Functions with Lipschitz Hessian:

V3f(x)[u,u7u] < L2||u||37 Vx, u

» Fixed global norm (no affine-invariance)
» Efficiency of the Cubic regularization of Newton's method
[Nesterov-Polyak, 2006; Cartis-Gould-Toint 11; Grapiglia-Nesterov, 2017]

Functions with Lipschitz third derivative:

V3 () [u, u,v] < V2LV E(X)u, u) 2| ul||v], Vx, u, v

» Faster rates for second-order schemes

[Nesterov, 2018; 2021; Kamzolov-Gasnikov-Dvurechensky, 2021;
D-Mishchenko-Nesterov, 2022]
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Quasi-Self-Concordant Functions

The standard Euclidean norm for some fixed operator B = BT > 0:

lul| = (Bu,u)/?, Islls == (s,B7!s)1/2,
and denote the local norm:

lullx = (V2F(x)u, u)/2.

In this talk, we assume that f is quasi-self-concordant with
constant M > 0:

VI )u u,v] < MlulZlvl, Yo,

» Combination of the Lipschitzness and classic Self-Concordance

[Bach, 2010; Sun—Tran-Dinh, 2019; Karimireddy—Stich—Jaggi, 2018]
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Examples

VEF()[u, u,v] < MJulZ]|v]]

Example 0: f is quadratic. Then .
Example 1: f(x) = eX. Then f”(x) = f"(x) = e = M = 1],
Example 2: f(x) =In(1+ €¥). Then
Fix) = e (%) = F(x)-(1-f(x),
(x) = f"(x)-(1-2f"(x)).
Thus

) = f(x)1- 2= < f(x) = [M=1]
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Examples
Example 3: (Generalized Linear Models):
) = &3 él(an),
and ¢ : R — R is quasi-SC loss function = f(x) is quasi-SC.

Example 4: (Soft Maximum):

- _ S exp ({aX)=bi ~ x) — by
min f(x) = u In( ’; exp( o ) ) ~ 1ga£xm[<a,,x) bi.
: . . 2 mooT
f(x) is quasi-SC with |M = — | for B := ) aja; .
H i=1

Example 5: (Matrix Scaling, A € RT*"):

fix,y) = > AjeiTN, x,y € R”
1<ij<n

is quasi-SC with | M = /2 | for B := |.
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Basic Operations

1.

2.

f(-) = fi(-) + f2(-) is quasi-SC with M = max{ M, M,}

Adding to f an arbitrary convex quadratic function does not
change M

. Scale-invariance: f(-) — cf(:), ¢ > 0, does not change M

For an affine substitution, f(x) = g(Ax + b), we need to
update the global norm:

Bf = ATB,A

(no affine invariance)
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Main Bounds

Lemma. for quasi-SC f we have, for any x, y:
vzf(x)efl\/llleyll < sz(y) < V2f(x)eMfoy||

= the Hessian is stable: For any x,y s.t. [x —y[| < r:= 4 it
holds

1

IV (x) = fly) = eV3f(x).

[Cohen-Madry-Tsipras-Vladu, 2017; Karimireddy-Stich-Jaggi, 2018]

The gradient approximation:
> [[VF(y)= V()= V() (y=x) |l < Mlly—x[IZ-o(Mly—x]),

where ¢(t) := % > 0 is a convex and monotone function:
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Bounds on the Function

Using our previous function ¢(t) := et_tﬁ_l

upper and lower second-order models:

> 0, we have global

)
f(@) + (V@) y - =) + |y — |2 o(M|ly — ) !

-—
-

—__——

fl@) +(Vf(x).y —z)+[ly — |3 - o(-M|ly — z|])
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Gradient Regularization
Problem: min [F(x) = f(x) 4+ 1(x)|, where f is quasi-SC.
Consider one regularized Newton step, for 8 > 0:

x* = argmin | (VF(x),y = x) + 3y = xIZ + §lly = xI? + (y)]
y

& VF(x)+[V3(x) + 8B](xT —x) € —oy(xT).

Lemma. Set 8 := o||Vf(x) + s||« for any s € 9¢(x) and o > M.
Then,

1. IxT —x|| < %

2. |Ixt — x||)2( < IIVf(X/)ﬁSH*

[Polyak, 2009; Ueda-Yamashita, 2009; Mishchenko, 2021; D-Nesterov, 2021]
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Progress of One Step

Main Lemma. Let 8 := o||F'(x)]|« for F'(x) € 9F(x) and ¢ > M.

Then, for the specific subgradient
F'(x*) == Vf(xt) = Vf(x) — [V3f(x) + BB](x* — x) € OF(x"),

we have
(Fi(xt),x =xt) > 55| F'(x))2.

Note: by convexity, we conclude

Fx) = F(xt) = (F(xP),x=x%) > 5llF ()2
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Gradient Regularization of Newton Method

Init: xp € dom and go = ||F'(x0)||« for any F'(xp) € OF (xo)-

Iteration, k > 0:

» For some o, > 0, compute Xxy1 S.t.

VE(x) + [V2F(x) + 08B (xks1 — xk) € —09(xuq1)

» Update
8k+1 = [V F(xu41) = VI (xk) = [V2F (xk) + 0 k8k B (X1 — i) | «

Theorem. Set o, := M. Then, we have the global linear rate:

F(xk) — F* < exp(—%) (F(xo) — F*) + exp(—%)goD,
where D := max{||x — x*|| : F(x) < F(xo)}.
= the global complexity: (’)(MD In %) to find F(xx) — F* <e¢
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Super-Universal Newton Method

In our method, we set o := M
> Instead, we can use a simple adaptive search:

Init: Choose xp € dom ), go = ||F'(x0)l+, and o¢ > 0.
Iteration, k > 0:
1. Find smallest j, > 0 s.t. for By := #*oy g and xT:

VF(xk) + [V () + BBl (xT —xk) € —0¢(xT)
it holds
(F'(xF),xe = xt) > i IF/(<)IE.

2. Set xkp1 = xT, gkr1 = [|F/(xF)]|, and oy g = P2

[D-Mishchenko-Nesterov, 2022]
» The method does not need to know any parameters

> Automatic adjustment to the right problem class
> In average: one extra oracle call per iteration
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Local Analysis

The classic Newton's method has a local quadratic convergence,
when close to the solution [Fine, 1916; Bennett, 1916; Kantorovich, 1948]

» We have the same local rate for our method!
Theorem. Let V2f(x) = ul,Vx. Let

IF'(x)ll« < (a neighborhood of the solution)

Then,

ok

[F' ()l < ﬁ(é)

» Quadratic convergence: to find ||F'(xk)||« < € it is enough to
perform k = O(InIn ;=) steps.
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Proximal Viewpoint

Proximal-Point Method:

~

Xk+1 =

y

argmin [hk(y) = F(y)+ 231“ ly — Xk||2}

[Moreau, 1965; Rockafellar, 1976; Martinet, 1978; Solodov-Svaiter, 2002]

Note: the subproblem hi(-) is strongly convex with constant
= akl We

+1°

have

h(y) =

F'(y) + 2By — ).

Ak+1

The neighborhood of local quadratic convergence:

Set:

accuracy by Newton's method

?
)l = IF e < 2 = siw-
! N inimize hi(-) up ¢
A+l = T we can minimize ng(-) up to any
T 2MIF ()]
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Dual Newton Scheme

Init: xo € dom and gp = ||F'(x0)]|« for F'(x0) € OF (x0), 0 > 0.

lteration, k > 0:
1. Set zp = xx
2. For t > 0 iterate:
> Compute z;11 s.t.

Vif(ze) + [V?f(z) + MgkB)(ze31 — z¢) € —0¢(ze41)

> Until [[sea . < 345, where
St+1 = vf(zt+1) - Vf(zt) — V2f(2t)(zt+]_ - Zt)-
3. Set xxt1 = Ze+1 and gry1 = |se+1 — 2Mgi B(xkv1 — xk) I«

4. If gkr1 < 6 then return xi 1
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Convergence of the Dual Newton

Theorem. We have the global linear rate for the gradient norm:

IF Gl < exp(2M2(1x0 — x*[12 +26)° = &) |F/(30) |-

The total number N, of second-order oracle calls is bounded as

Ne < k- <1+ ﬁlnln (I;J,(/,lgz).
= the method stops after O(M?||xp — x*||?) iterations.

+ Possibility of restarts
+ Convergence in terms of the (sub)gradient norm

— The condition number is worse: (MD)? vs. MD
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Acceleration

Idea. Contraction + regularization, for v € (0, 1):

min[Ai(y) = Aaf (1 + (1 7)) + asa(y) + By - wel?]

where A = Ag(1 — )7k, ax == Ak — Ak_1.

Contracting Proximal Method. Iteration, k > 0:

Vkr1 = argmin hg(y)

y
Xkr1 = Ykt + (1= 7)x

[Nesterov, 1983; Giiler, 1991; Lin-Mairal-Harchaoui, 2018; D-Nesterov, 2020]

k
Theorem. A (F(xi) — F*)+3 3 v —vial® < O(llxo —x*7)
i=1

» Global linear rate by design: F(xx) — F* < (9(”:;’;();;‘)‘2)

» Control over ||v; — vj_1]]
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Choice of ~

How to minimize vi1 ~ argmin hy(y)?
y

Consider p(y) = f(vy + (1 —v)xk), v€(0,1)
> v =0, we have p(y) = f(xx)
> ~v =1, we have p(y) = f(y)

The parameter of quasi-SC is

Hence, the Dual Newton Method needs the following number of

iterations at step k > 0, to approximate v; = argmin hy(y):
y

e < O(M2lve—I?) = O(M2ve — vl
Totally, after k steps:

k k
S < O(PM2 Y v vieal?) < O(4*M2x0 — x*|2)
i=1 i=1

—
~
=
2 |

= optimal choice: |y = [M||xp — X*H]_2/3
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Convergence Rates Summary
Problem:  min [F(X) — f(x) + ¢(x)}
1. Primal Newton with Gradient Regularization:
O(MD In %) second-order oracle calls for f
2. Dual Newton:
O([MHXO — x*|”2 In % Inin 6%)
3. Accelerated Newton:
O([Mllxo — x*11]*%)

Optimal? Most probably yes!

» Matches the lower bound for the ball minimization oracle
[Carmon-Jambulapati-Jiang-Jin-Lee-Sidford-Tian, 2020]
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Pointwise Maximum

Non-smooth problem:

min |f(x) = max [(a;,x>—bi]}

x€R" 1<i<m
Find xx s.t. f(xx) — * <e.
1. Subgradient method: O(1/£2) [Shor, 1962]
2. Smoothing technique: f,(x) < f(x) < f,(x) + uD? where

m i,X)—bj
fu(x) = n |“< >t exp(%) )
> Need to choose p = O(g)

» Lipschitz gradient L(f,) =1/p = O(1/¢)
»> Fast Gradient Method

(9( L(fu)DzeE*l) = O(1/e) [Nesterov, 2003]

3. Newton's Method. f, is quasi-SC with M =2/ = O(1/e¢).
> Primal Newton Method: O(MD) = (5~(1/5)
> Accelerated Newton: O((MD)?/3) = O(1/2/3) 1
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Experiment: Soft Maximum

min f,(x)

Iterate kK > 0:

M1 = o (V20 + (VAN B) T V()

Soft Maximum, n=500, m=1000, u=0.05 Soft Maximum, n =500, m=1000, u=0.05
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Conclusions

» Quasi-SC functions = loss functions with exponential tails
» The Newton method is very efficient in this case (fast global
linear rate): (’)(MD In %)

» We can accelerate: @((MD)2/3>
» Solving

min [F(x) — f(x) + ¢(x)}

X

is as difficult as

min [(Ax,x) —(b,x) + w(x)}

X
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Open Questions

» Lower complexity bounds

» Practical accelerated schemes (currently, no local superlinear
convergence)

» Comparison with polynomial-time Interior-Point schemes

» Other problem classes? Minimizing an arbitrary convex
analytic function

» Consequences for non-convex optimization

Thank you very much for your attention!

Happy Birthday to Prof. Boris Mordukhovich!
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