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Convex Optimization Problem

min
x

f (x), x ∈ Rn

f is convex and differentiable.

The Goal: efficient second-order optimization methods with
global convergence guarantees.

▶ This work: a very simple variant of the Newton Method that
automatically achieves fast global rates for wide classes of
convex problems.
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Notation

Fix matrix B = BT ≻ 0 and denote the Euclidean norm

‖x‖ = ⟨Bx , x⟩1/2, x ∈ Rn.

⇒ induced norm for multilinear forms.
▶ Gradients:

‖∇f (x)‖* = max
‖h‖≤1

⟨∇f (x), h⟩ = ⟨∇f (x),B−1∇f (x)⟩1/2

▶ High-order Tensors: ‖Dpf (x)‖ = max
‖h‖≤1

|Dpf (x)[h]p|

Assume that the pth derivative is Lipschitz continuous (p ≥ 1):

‖Dpf (x)− Dpf (y)‖ ≤ Lp‖x − y‖, ∀x , y ∈ Rn
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The Plan

1. Tensor Methods in Convex Optimization

2. Super-Universal Newton Method

3. Uniformly Convex Functions

4. Experiments and Conclusions



Basic Tensor Method

min
x∈Rn

f (x)

Global upper model of our function, for H ≥ Lp:

f (y) ≤ Ωp(x ; y) +
H

(p+1)!‖y − x‖p+1, ∀x , y ∈ Rn,

where Ωp is Taylor polynomial:

Ωp(x ; y)
def
= f (x) + ⟨∇f (x), y − x⟩+

p∑︀
i=2

1
i!D

i f (x)[y − x ]i .

Basic Tensor Method of order p ≥ 1. Iterate, k ≥ 0:

xk+1 = argmin
y∈Rn

{︁
Ωp(xk ; y) +

H
(p+1)!‖y − xk‖p+1

}︁
[Birgin et al., 2017; Nesterov, 2019; Cartis-Gould-Toint, 2020; Grapiglia-Nesterov, 2020]
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Global Convergence

Theorem. Let H := Lp ⇒ global rate of the Tensor Method:

f (xk)− f ⋆ ≤ 𝒪
(︀
1/kp

)︀
p = 1: the Gradient Method. xk+1 = xk − 1

HB
−1∇f (xk)

p = 2: the Cubic Newton [Nesterov-Polyak, 2006]

xk+1 = xk −
(︀
∇2f (xk) +

Hrk
2 B

)︀−1∇f (xk),

where rk is the solution to a univariate dual problem.

p = 3: the Third-Order Tensor Method

xk+1 = argmin
y

{︁
Ω3(xk ; y) +

H
24‖y − xk‖4

}︁
. . .
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Convexity of the High-Order Model

Note: Ωp(x ; y) is nonconvex for p ≥ 3.
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Theorem [Nesterov, 2018]: Let f (·) be convex and H ≥ pLp. Then

M(y) := Ωp(x ; y) +
H

(p+1)!‖y − x‖p+1

is convex in y .

▶ We can use efficient tools of Convex Optimization to solve the
subproblem
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Gradient Regularization Technique

Step of the Cubic Newton:

x+ = x −
(︀
∇2f (x) + 𝜆B

)︀−1∇f (xk),

where 𝜆 = H
2 ‖x

+ − x‖. Note that

‖x+ − x‖ = ‖
(︀
∇2f (x) + 𝜆B

)︀−1∇f (x)‖

≤ 1
𝜆‖∇f (x)‖* = 2

H‖x+−x‖‖∇f (x)‖*.

Hence, we have an upper bound:

𝜆 = H
2 ‖x

+ − x‖ ≤
√︁

H‖∇f (x)‖*
2

Gradient Regularization.

x+ = x −
(︁
∇2f (x) +

√︁
H‖∇f (x)‖*

2 B
)︁−1

∇f (x).

▶ One matrix inversion; fast global rates
[Mishchenko, 2021; D-Nesterov, 2021]
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Weakness of the Third Derivative

Third derivative is Lipschitz continuous:

‖D3f (x)− D3f (y)‖ ≤ L3‖x − y‖, x , y ∈ Rn

and convexity: ∇2f (x) ⪰ 0. Then,

|D3f (x)[h]3| ≤ 1
𝜏∇

2f (x)[h]2 + 𝜏
2L3‖h‖4, ∀x ∈ Rn, 𝜏 > 0.

⇒ we can upper bound the third derivative in Taylor’s approximation:

f (y) ≤ Ω3(x ; y) +
H
24‖y − x‖4

≤ f (x) + ⟨∇f (x), y − x⟩+
(︀ 1

2 + 1
6𝜏

)︀
∇2f (x)[y − x ]2 +

(︀
𝜏 + 1

2

)︀
L3
12‖y − x‖4

▶ Purely second-order method (the same fast global rates)
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Family of Problem Classes

Let p ∈ {2, 3}. Fix 𝜈 ∈ [0, 1] and define

Lp,𝜈
def
= sup

x ̸=y

‖Dpf (x)−Dpf (y)‖
‖x−y‖𝜈

Lp,𝜈 is log-convex function of 𝜈: for any 0 ≤ 𝜈1 ≤ 𝜈2 ≤ 1 we have

Lp,𝜈 ≤
[︀
Lp,𝜈1

]︀ 𝜈2−𝜈

𝜈2−𝜈1
[︀
Lp,𝜈2

]︀ 𝜈−𝜈1
𝜈2−𝜈1 ∀𝜈 ∈ [𝜈1, 𝜈2].

Define Mq, for 2 ≤ q ≤ 4 :

M2+𝜈
def
= L2,𝜈 , 𝜈 ∈ [0, 1),

M3+𝜈
def
= L3,𝜈 , 𝜈 ∈ [0, 1].

Main Assumption: inf
2≤q≤4

Mq < +∞ .
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Newton Method with Gradient Regularization

Fix q ∈ [2, 4]. Choose Mq > 0.

Iteration, k ≥ 0:

xk+1 = xk −
(︁
∇2f (xk) + 𝜆kB

)︁−1
∇f (xk),

with 𝜆k := (6Mq‖∇f (xk)‖q−2
* )

1
q−1 .

Theorem. Global convergence rate:

f (xk)− f ⋆ ≤ 6MqD
q
(︁

32(q−1)
k

)︁q−1
+ ‖∇f (x0)‖D exp

(︀
−k

4

)︀
where D is diameter of the initial sublevel set.

Note: ‖∇f (x0)‖D exp
(︀
−k

4

)︀
≤ 𝜀 for k ≥ 4 ln ‖∇f (x0)‖D

𝜀 .
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Which problem class to choose?

Global rate: f (xk)− f * ≤ O
(︁
MqDq

kq−1

)︁
, 2 ≤ q ≤ 4.

q = 2 : Bounded variation of the Hessian

⇒ f (y) ≤ Ω2(x ; y) +
M2
2 ‖y − x‖2, ∀x , y

q = 3 : Lipschitz continuity of the Hessian

⇒ f (y) ≤ Ω2(x ; y) +
M3
6 ‖y − x‖3, ∀x , y

q = 4 : Lipschitz continuity of the third derivative

⇒ f (y) ≤ Ω3(x ; y) +
M4
24 ‖y − x‖4, ∀x , y

Our objective can belong to several problem classes
simultaneously!
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Main Lemma

Consider the step x+ = x −
(︁
∇2f (x) + 𝜆B

)︁−1
∇f (x)

with
𝜆 := H‖∇f (x)‖𝛼* , 0 ≤ 𝛼 ≤ 1

Lemma. Let q−2
q−1 ≤ 𝛼 ≤ 1, and H ≥

(︀
6Mq

)︀ 1
q−1

(︁
1

‖∇f (x)‖*

)︁𝛼− q−2
q−1 .

Then
⟨∇f (x+), x − x+⟩ ≥ 1

4𝜆‖∇f (x+)‖2
*.

Note: by convexity, we have

f (x)− f (x+) ≥ ⟨∇f (x+), x − x+⟩ ≥ 1
4𝜆‖∇f (x+)‖2

*.
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Super-Universal Newton

Initialization. Choose x0 ∈ Rn. Fix arbitrary 𝛼 ∈
[︁

2
3 , 1

]︁
, H0 > 0.

Iteration k ≥ 0:

Find smallest jk ≥ 0 s.t. for 𝜆k := 4jkHk‖∇f (xk)‖𝛼* and

x+ = xk −
(︁
∇2f (xk) + 𝜆kB

)︁−1
∇f (xk)

it holds

⟨∇f (x+), xk − x+⟩ ≥ 1
4𝜆k

‖∇f (x+)‖2
*.

Set xk+1 = x+ and Hk+1 = 4jkHk
4 .
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Global Convergence

Theorem. The method is well defined. We have

f (xk)− f ⋆ ≤ 6MqD
q
(︁

32(q−1)
k

)︁q−1
+ ‖∇f (x0)‖D exp

(︀
−k

4

)︀
▶ The average number of adaptive steps per iterations is two.

The method does not know q. To reach f (xk)− f ⋆ ≤ 𝜀, we need

k = 𝒪
(︁
infq∈[2,4]

[︀MqDq

𝜀

]︀1/q
+ ln 1

𝜀

)︁
second-order oracle calls.
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Strictly Convex Functions

Initial sublevel set ℱ0
def
=

{︁
x : f (x) ≤ f (x0)

}︁
and its diameter:

D
def
= sup

x ,y∈ℱ0

‖x − y‖.

Symmetrized Bregman Divergence:

𝛽f (x , y)
def
= ⟨∇f (x)−∇f (y), x − y⟩ > 0.

and normalization:

𝜉f (x , y)
def
= 1

VF
𝛽f (x , y)

where Vf
def
= sup

x ,y∈ℱ0

𝛽f (x , y).

Relative s-size:

Ds
def
= sup

x ̸=y
‖x − y‖ · 𝜉f (x , y)−1/s , s ≥ 2.

Assumption: Ds < +∞ for some s ∈ [2,+∞].
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Summary of Complexities

▶ Level of smoothness 2 ≤ q ≤ 4 is fixed.

2 ≤ s < q s = q q < s <∞ s = ∞(︁
Mq

Ds
sD

q−s

VF

)︁ 1
q−1

+ ln ln 1
𝜀

(︁
Mq

Dq
q

VF

)︁ 1
q−1

ln 1
𝜀

(︁
Mq

Dq
s

(V q
F 𝜀

s−q)1/s

)︁ 1
q−1

(︁
Mq

Dq

𝜀

)︁ 1
q−1
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Experiment: Polytope Feasibility

min
x∈Rn

[︁
f (x) :=

m∑︀
i=1

(︀
⟨ai , x⟩ − bi

)︀p
+

]︁
,

where (t)+
def
= max{0, t}
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Experiment: Soft Maximum

min
x

f (x) := 𝜇 ln
(︁ m∑︀

i=1
exp

(︀ ⟨ai ,x⟩−bi
𝜇

)︀ )︁
≈ max

1≤i≤m

[︀
⟨ai , x⟩ − bi

]︀
.

Set B :=
m∑︀
i=1

aia
T
i ⪰ 0 (the primal norm ‖x‖ = ⟨Bx , x⟩1/2)

▶ Mq ≤ 12
𝜇q−1 , ∀q ∈ [2, 4]
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Conclusions
1. To globalize the Newton’s method we need to do regularization

▶ Cubic Newton — explicit regularizer, ‖ · ‖3

▶ We can reduce the power to ‖ · ‖2 by Gradient Regularization

2. Method ↔ Problem class

3. Super-universal methods: adjust automatically to the best
problem class
▶ Achieved by using an adaptive search

4. We can solve Composite Problems

min
x

{︁
F (x) := f (x) + 𝜓(x)

}︁
where 𝜓 is a nonsmooth part (e.g. ℓ1-regularizer; indicator of
a convex set)
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Open Questions

1. Accelerated (optimal) Super-Universal second-order methods?
[Grapiglia-Nesterov, 2019; Carmon-Hausler-Jambulapati-Jin-Sidford, 2022]

2. Quasi-Newton methods?

▶ Nonasymptotic complexity bounds: local superlinear rates
[Rodomanov-Nesterov, 2021]

▶ Lazy Hessian updates: update Hessian once per n steps
[D-Chayti-Jaggi, 2022]

3. Consequences for nonconvex and stochastic optimization?

Thank you very much for your attention!
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