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Composite Optimization Problem

min
x

{︁
F (x)

def
= f (x) + 𝜓(x)

}︁
I f is convex and several times differentiable (the difficult part).
I 𝜓 : Rn → R ∪ {+∞} is a simple convex function.
I We assume that the domain of 𝜓,

dom𝜓
def
=

{︁
x ∈ Rn : 𝜓(x) < +∞

}︁
,

is bounded.
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Example: Indicator of a Set

1. Let Q ⊂ Rn be a simple bounded convex set.

We can use

𝜓(x) = IndQ(x) :=

{︃
0, x ∈ Q

+∞, otherwise.

⇒ Then our problem is min
x∈Q

f (x)
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Example: ℓ1-Regularization

2. Let

𝜓(x) =

{︃
𝜆‖x‖1, x ∈ Q

+∞, otherwise.

⇒ Adding ℓ1-Regularizer to the problem:

min
x∈Q

f (x) + 𝜆‖x‖1.

Enforce solutions to be sparse.
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Review: Gradient Methods

Let ∇f (x) be Lipschitz continuous: ‖∇f (x)−∇f (y)‖* ≤ L‖x − y‖

The Gradient Method [Cauchy, 1847]:

xk+1 = argmin
y

{︁
f (xk) + ⟨∇f (xk), y − xk⟩ + L

2‖y − xk‖2 + 𝜓(y)
}︁

I The method depends on the norm ‖ · ‖
I Global convergence: F (xk) − F * ≤ O( 1

k )

The Conditional Gradient Method [Frank-Wolfe, 1956]:

vk+1 = argmin
y

{︁
f (xk) + ⟨∇f (xk), y − xk⟩ + 𝜓(y)

}︁
,

xk+1 = 𝛾kvk+1 + (1− 𝛾k)xk

I Set 𝛾k = 2
k+2 . Then F (xk) − F * ≤ O( 1

k )

Note: Near-optimal for ‖ · ‖∞-balls [Guzmán-Nemirovski, 2015]
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Review: Second-Order Methods

The Newton’s Method:
[Newton, 1669; Raphson, 1690; Fine-Bennett, 1916; Kantorovich, 1948]

xk+1 = argmin
y

{︁
⟨∇f (xk), y − xk⟩ + 1

2⟨∇
2f (xk)(y − xk), y − xk⟩

+ 𝜓(y)
}︁

If 𝜓(x) ≡ 0, then

xk+1 = xk−
(︀
∇2f (xk)

)︀−1∇f (xk)

I Quadratic convergence 𝒪(log log 1
𝜀 ), if ∇2f (x*) ≻ 0 and x0

close to x*

I No global convergence. A heuristic: use line-search in practice
I The method is affine-invariant (it does not use any norms)
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This Work

The goal: to develop second- and high-order algorithms with
global convergence guarantees

I The rate of second-order methods should be better than that
of first-order methods

We propose a general framework of Contracting-Point Methods
I New affine-invariant algorithms of different order p ≥ 1
I We prove: F (xk) − F * ≤ 𝒪(1/kp)
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Contraction Technique

Let us consider contraction of the objective:

g(x) := f (𝛾x + (1− 𝛾)x̄), 𝛾 ∈ [0, 1].

Note:
∇g(x) = 𝛾∇f (𝛾x + (1− 𝛾)x̄),

∇2g(x) = 𝛾2∇2f (𝛾x + (1− 𝛾)x̄),
. . .

Smoothness properties of g(·) are better than that of f (·)
Idea: use 𝛾 to balance the error of g(x) ≈ f (x) and smoothness
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Contracting-Point Method

Conceptual Contracting-Point Method. Iterate, k ≥ 0:

vk+1 ≈ argmin
x

{︁
f (𝛾kx + (1− 𝛾k)xk) + 𝛾k𝜓(x)

}︁
,

xk+1 = 𝛾kvk+1 + (1− 𝛾k)xk

I Denote Fk(x)
def
= f (𝛾kx + (1− 𝛾k)xk) + 𝛾k𝜓(x).

Lemma. Let vk+1 be an approximate minimizer of Fk(·):

Fk(vk+1) − F *
k ≤ 𝛿k+1.

Then
F (xk+1) ≤ (1− 𝛾k)F (xk) + 𝛾kF

* + 𝛿k+1.

I If 𝛾k → 0 with an appropriate rate, and 𝛿k+1 are small, we
have global convergence
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Affine-Invariant Smoothness Condition

Fix p ≥ 1. For a bounded convex set Q, denote

𝒱(p+1)
Q (f )

def
= sup

x ,y ,v∈Q

⃒⃒
Dp+1f (y)[v − x ]p+1

⃒⃒
.

Note: for a fixed norm, we have 𝒱(p+1)
Q (f ) ≤ Lp(diamQ)p+1,

where Lp is the Lipschitz constant for pth derivative.

It holds, ∀x , xk ∈ Q and ∀𝛾k ∈ (0, 1]:⃒⃒⃒
f (𝛾kx + (1− 𝛾k)xk) − f (xk) −

p∑︀
i=1

𝛾 i
k
i! D

i f (xk)[x − xk ]i
⃒⃒⃒

≤ 𝛾p+1
k

(p+1)!𝒱
(p+1)
Q (f ) ≡ 𝛿k+1 (Taylor’s Theorem).
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Contracting-Point Tensor Method

Contracting-Point Tensor Method:

vk+1 = argmin
x

{︁ p∑︀
i=1

𝛾 i
k
i! D

i f (xk)[x − xk ]i + 𝛾k𝜓(x)
}︁
,

xk+1 = 𝛾kvk+1 + (1− 𝛾k)xk

Since dom𝜓 is bounded, the subproblem is well-defined.

Theorem. Set 𝛾k := p+1
k+p+1 . Then F (xk) − F * ≤ O

(︁𝒱(p+1)
dom𝜓(f )

kp

)︁
I p = 1: The Conditional Gradient Method [Frank-Wolfe, 1956]

I p = 2: Contracting Newton (new)
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Contracting Newton Method

I p = 2: Contracting Newton

vk+1 = argmin
x

{︁
⟨∇f (xk), x − xk⟩ + 𝛾k

2 ⟨∇2f (xk)(x − xk), x − xk⟩

+ 𝜓(x)
}︁
,

xk+1 = 𝛾kvk+1 + (1− 𝛾k)xk

I F (xk) − F * ≤ 𝒪(1/k2).
I Acceleration of the Conditional Gradient Method by employing

second-order information
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Trust-Region Interpretation

Contracting Newton Method (reformulation):

xk+1 = argmin
y

{︁
⟨∇f (xk), y − xk⟩ + 1

2⟨∇
2f (xk)(y − xk), y − xk⟩

+ 𝛾k𝜓(xk + 1
𝛾k

(y − xk))
}︁

I 𝛾k = 1: The classical Newton’s Method

I Interpretation: regularization of quadratic model by the
assymmetric trust region

If 𝜓(x) = IndQ(x), where Q = {x ∈ Rn : ‖x‖ ≤ D
2 } is the ball, we

can use techniques developed for Trust-Region methods
[Conn-Gould-Toint, 2000].
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Inexact Contracting Newton

Let 𝜓(x) = IndQ(x) for an arbitrary bounded convex set Q.

xk+1 = argmin
y

{︁
⟨∇f (xk), y − xk⟩ + 1

2⟨∇
2f (xk)(y − xk), y − xk⟩

: y ∈ xk + 𝛾k(Q − xk)
}︁

How to compute the iteration?

I We can solve the subproblem inexactly by the first-order
Frank-Wolfe algorithm

I We have full control over the required accuracy

Theorem. To reach F (xK ) − F * ≤ 𝜀 it needs
∘ K = 𝒪

(︀ 1√
𝜀

)︀
oracle calls for f

∘ 𝒪(1
𝜀 ) linear minimization oracle calls for 𝜓 totally
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Experiment: Log-sum-exp over the Simplex

min
x∈Rn

+

{︁
f (x) = 𝜇 log

(︁ m∑︀
i=1

e(⟨ai ,x⟩−bi )/𝜇
)︁

:
n∑︀

i=1
x (i) = 1

}︁
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Stochastic Methods

Finite-sum minimization: f (x) = 1
M

M∑︀
i=1

fi (x).

I M can be very big in modern applications (several millions).
I Machine Learning: M is the size of the dataset.

It is expensive to compute the full gradient and Hessian:

∇f (x) = 1
M

M∑︀
i=1

∇fi (x), ∇2f (x) = 1
M

M∑︀
i=1

∇2fi (x).

Random estimators:
∇f (xk) ≈ gk := 1

mg
k

∑︀
i∈Sg

k

∇fi (xk),

∇2f (xk) ≈ Hk := 1
mH

k

∑︀
i∈SH

k

∇2fi (xk).

Sg
k ,S

H
k ⊆ {1, . . . ,M} are random subsets (sampled uniformly) for a

fixed batchsize mg
k = |Sg

k |, and mH
k = |SH

k |.
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Stochastic Contracting Newton

gk := 1
mg

k

∑︀
i∈Sg

k

∇fi (xk),

Hk := 1
mH

k

∑︀
i∈SH

k

∇2fi (xk).

Stochastic Contracting Newton:

xk+1 = argmin
y

{︁
⟨gk , y − xk⟩ + 1

2⟨Hk(y − xk), y − xk⟩

+ 𝛾k𝜓(xk + 1
𝛾k

(y − xk))
}︁

Theorem. At iteration k , set mg
k = (1 + k)4, mH

k = (1 + k)2.
Then,

E
[︀
F (xk) − F *]︀ ≤ 𝒪(1/k2).
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Variance Reduction

I Idea: at some iterations, recompute the full gradient
[Schmidt-Roux-Bach, 2017]

ĝk := 1
mg

k

∑︀
i∈Sg

k

(∇fi (xk) −∇fi (zk) + ∇f (zk)),

Hk := 1
mH

k

∑︀
i∈SH

k

∇2fi (xk),

where zk is being updated not often.

zk := x𝜋(k), 𝜋(k)
def
=

{︃
2⌊log2 k⌋, k > 0
0, k = 0.

I During N iterations, we recompute the full gradient only
log2 N times.

Theorem. It is enough to set mg
k = mH

k = (1 + k)2. Then we have

E
[︀
F (xk) − F *]︀ ≤ 𝒪(1/k2).
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Experiments: Logistic Regression

min
‖x‖2≤D

2

M∑︀
i=1

fi (x), fi (x) = log(1 + exp
(︀
⟨ai , x⟩

)︀
)

D plays the role of regularization parameter
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Stochastic Methods for Logistic Regression

Approximate ∇f (x), ∇2f (x) by stochastic estimates
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Conclusions

Using the contraction of the objective

gk(x) := f (𝛾kx + (1− 𝛾k)xk),

we are able to construct new algorithms for Convex Optimization,
endowed with the global complexity bounds.

1. First-order Taylor’s approximation ⇒ Frank-Wolfe algorithm
2. Second-order approximation ⇒ Contracting Newton Method

I The methods are affine-invariant (do not depend on a norm).
I There is a complementary Proximal-Point approach:

gk(x) := f (x) + 𝛼k
2 ‖x − xk‖2.
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Open Questions

I Lower complexity bounds?

Note: Frank-Wolfe algorithm is near-optimal for ‖ · ‖∞-balls
[Guzmán-Nemirovski, 2015]

I Implementation for p ≥ 3 (the subproblem is not convex)?

Third-order Proximal-type Tensor Methods admits effective
implementation [Grapiglia-Nesterov, 2019]

I Variance reduction for the Hessian
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