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Composite Optimization Problem

min{F(x) def f(x)+¢(x)}

X

» f is convex and several times differentiable (the difficult part).
» ¢ R" = RU{+4o00} is a simple convex function.
» We assume that the domain of 1,

dom ) o {XER” ; w(x)<+oo},

is bounded.
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Example: Indicator of a Set

1. Let @ C R” be a simple bounded convex set.

. .
2<p< oo p=oc

We can use

bx) = Indg(x) = {0’ xeQ

+00, otherwise.

= Then our problem is )’2‘8 (x)
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Example: /;-Regularization

2. Let
o) = {Anxul, xeQ

400, otherwise.

= Adding /1-Regularizer to the problem:

min £(x) + Al|x||1.
xXEQ

Enforce solutions to be sparse.
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Review: Gradient Methods

Let V£ (x) be Lipschitz continuous: [|[Vf(x) —Vf(y)|« < L||x—y]||

The Gradient Method [Cauchy, 1847]:

xern = amgmin{ () + (VF(x,y =0 + by = xlP + () |
y

» The method depends on the norm || - ||
> Global convergence: F(xx) — F* < O(%)

The Conditional Gradient Method [Frank-Wolfe, 1956]:

vigr = argmin{ F(x) + (VF(x), ¥ = x) +%(0) }.
y

Xk+r1 = YVl + (1 — vi)xk

» Set vk = %ﬁ Then F(xk) — F* < O(%)

Note: Near-optimal for || - ||oo-balls [Guzman-Nemirovski, 2015]
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Review: Second-Order Methods

The Newton's Method:
[Newton, 1669; Raphson, 1690; Fine-Bennett, 1916; Kantorovich, 1948]

X1 = argmin{wf(xk%y —x¢) + 2V ()Y — xx), Y — xk)

' + w(y)}

If ¥(x) =0, then
X1 = Xk_(vzf(xk))_1Vf(Xk)

> Quadratic convergence O(loglog 1), if V2f(x*) = 0 and xo
close to x*

» No global convergence. A heuristic: use line-search in practice

» The method is affine-invariant (it does not use any norms)
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This Work

The goal: to develop second- and high-order algorithms with
global convergence guarantees

» The rate of second-order methods should be better than that
of first-order methods

We propose a general framework of Contracting-Point Methods

» New affine-invariant algorithms of different order p > 1
» We prove: F(xx) — F* < O(1/kP)
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Contraction Technique
Let us consider contraction of the objective:

g(x) = f(xx+(1-79)%), ~yelo,1]

y=1 y=0.8 y=0.7 y=0.6
Note
Vg(x) = ~AVF(lyx+(1-7)x),

Vig(x) = ¥’V (yx+(1-7)%),

Smoothness properties of g(-) are better than that of f(-)
Idea: use v to balance the error of g(x) & f(x) and smoothness
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Contracting-Point Method

Conceptual Contracting-Point Method. lterate, k > 0:

Vik+1

Xk+1

~

arg)r(nin{f(’ykx + (1 — ve)xk) + ’ka(x)},

ViVi+1 + (1 — vi)xk

» Denote Fy(x) def f(vaex 4 (1 — vi)xk) + b (x).

Lemma. Let vx11 be an approximate minimizer of Fy(-):

Then

Fi(vig1) — Ff < Oy

Fxke1) < (T —v)FOk) + 9 F* + 01

» If yx — 0 with an appropriate rate, and dx11 are small, we

have global convergence
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Affine-Invariant Smoothness Condition

Fix p > 1. For a bounded convex set @, denote

VE(F) € sup [DPHIF(y)[v — x]PTY.
X,¥,VEQ

Note: for a fixed norm, we have V(p+1)(f) < Lpy(diam Q)P*1,
where L, is the Lipschitz constant for pth derivative.

It holds, Vx, xx € Q and Vv, € (0, 1]:

Flrex + (1 — 7)) — Flxe) — é DI () [x — el

S

< e

1
V(p+1)(f) = ki1 (Taylor's Theorem).
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Contracting-Point Tensor Method

Contracting-Point Tensor Method:

P i . .
vigr = argmin{ 3 D ()l —xd + () |-

X =1

X4l = VeVt + (1= vi)xk

Since dom v is bounded, the subproblem is well-defined.

Theorem. Set

(pH1) (£
Tk = ghprr- Then F(x) — F* < O( domw( )>
» p = 1. The Conditional Gradient Method [Frank-Wolfe, 1956]

» p = 2: Contracting Newton (new)
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Contracting Newton Method

» p =2: Contracting Newton

Verl = argmin{(Vf(xk),x — xx) + %(sz(xk)(x — Xk), X — Xk)
+ 90},
Xer1 = kVkar + (1= i)

> F(xx) — F* < O(1/k?).
» Acceleration of the Conditional Gradient Method by employing
second-order information
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Trust-Region Interpretation

Contracting Newton Method (reformulation):

X1 = argmin{ (VF(xi),y = xic) + 5 (V2 (xi)(y = x) y — i)
y

+ b+ (=) |

» v, = 1: The classical Newton's Method

> Interpretation: regularization of quadratic model by the
assymmetric trust region

If 99(x) = Indg(x), where Q = {x € R" : ||x|| < 2} is the ball, we
can use techniques developed for Trust-Region methods
[Conn-Gould-Toint, 2000].
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Inexact Contracting Newton

Let ¢/(x) = Indg(x) for an arbitrary bounded convex set Q.

X1 = argmin{ (VF(xi),y = xic) + 5 (V2 () (y = x)y — i)
y

Dy € X+ (@ — xk) }

How to compute the iteration?

» We can solve the subproblem inexactly by the first-order
Frank-Wolfe algorithm

» We have full control over the required accuracy

Theorem. To reach F(xx) — F* < ¢ it needs
o K= O(%) oracle calls for

o O(%) linear minimization oracle calls for 1 totally
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Experiment: Log-sum-exp over the Simplex

min {f(x) = ulog( i e(<af’x>_bf)/”) : ,gnl x() = 1}

i=1

n =100, m = 2500, mu = 0.05 (c = 0.05)

10-2 | === Frank-Wolfe
—— Contr.Newton

Function value

0.00 025 050 075 1.00 1.25 1.50 1.75 2.00
Time, s

two times faster
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Stochastic Methods
M
Finite-sum minimization: f(x) = W > fi(x).

» M can be very big in modern applications (several millions).
» Machine Learning: M is the size of the dataset.

It is expensive to compute the full gradient and Hessian:

M M
Vf(x) = %;Vﬁ(x), V2f(x) = 4 3 V2i(x).

i=1

Random estimators:
Vi(xk) ~ gk = mif > Vii(xk),

ieS§
sz(xk) ~ Hk = # Z szi(Xk)-
kiesp
SE,SH C {1,..., M} are random subsets (sampled uniformly) for a

fixed batchsize m§ = |S¢|, and m{! = |SH|.
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Stochastic Contracting Newton

g = = > Vii(x),
klESf

H, = # > V2f,-(xk).
k IESE

Stochastic Contracting Newton:

Xip1 = argmin{ (8ksy — xic) + 5 (Hi(y — %),y — xi)
y

+ Ok + - (v — xK)) }

Theorem. At iteration k, set m§ = (1 + k)*, ml! = (1 + k)2,
Then,

E[F(x) - F*] < O(1/K?).
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Variance Reduction

> |dea: at some iterations, recompute the full gradient
[Schmidt-Roux-Bach, 2017]

& = or 2 (Vhilx) = Vii(zk) + V(z)),
kiest

He = # > V26(x),
kies

where z; is being updated not often.

dof | 2Us2kl k>0
Zk = Xm(k) m(k) = {0 k—0.

» During N iterations, we recompute the full gradient only
log, N times.

Theorem. It is enough to set m§ = m}! = (1+ k)?. Then we have
E[F(x)— F*] < O(1/k?).
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Experiments: Logistic Regression

min ﬁ/’:fi(x)a filx) = |og(1+exp(<a/,X>))

Ixll2< 3 i=1

D plays the role of regularization parameter

w8a, D = 20 w8a, D = 100
1009 : -+++ Frank-Wolfe 10!
== Grad. Method 100
1071
. - Fast Grad. Method 10-1
T 1072 —— Contr. Newton E —
2 10-3 “ e, === Aggr. Newton b 1072 BT EEl 5.1s
e f Q103 '
P -
§ 10 § 10-4 s \
107 “ 10 Ss~o
.
S-
1076 1076 . Se~all
0 50 100 150 200 0 500 1000 1500 2000
Iterations

Iterations

For bigger D the problem becomes more ill-conditioned
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Stochastic Methods for Logistic Regression

Approximate Vf(x), V2f(x) by stochastic estimates

YearPredictionMSD, D = 20

. ! «eex SGD
10 SVRG

10-1 -+ SNewton
[ . ‘...m’, ) _‘-— SVRNewton
S 1072 oy
7
= 1073
s}
c
2 1074 bt

~——
105 Ak/\\\
1076
0 50 100 150 200
Epochs

The problem with big dataset size (M = 463715) and small
dimension (n = 90)
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Conclusions
Using the contraction of the objective
8k(x) == fyex+ (1= vi)x),

we are able to construct new algorithms for Convex Optimization,
endowed with the global complexity bounds.

1. First-order Taylor's approximation = Frank-Wolfe algorithm
2. Second-order approximation = Contracting Newton Method

» The methods are affine-invariant (do not depend on a norm).

» There is a complementary Proximal-Point approach:
g(x) = )+ Fllx = xel*.
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Open Questions

» Lower complexity bounds?

Note: Frank-Wolfe algorithm is near-optimal for || - ||oc-balls
[Guzma&n-Nemirovski, 2015]

» Implementation for p > 3 (the subproblem is not convex)?

Third-order Proximal-type Tensor Methods admits effective
implementation [Grapiglia-Nesterov, 2019]

» Variance reduction for the Hessian
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Thank you for your attention!
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