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Optimization problem

min f(x), x eR"

f is convex and differentiable
» Fix a symmetric matrix B = BT > 0. Global Euclidean norms:

lull = (Bu,u)’?, sl = (s,B7s)!/?

For example, B := |
Newton’s method. lterate, with some 3, > 0:

Xk+1 = Xk — (V2f(Xk) + 5kB)71Vf(Xk)

[Newton, 1669; Raphson, 1690; Fine-Bennett, 1916; Kantorovich, 1948]
» Local quadratic convergence when S, — 0
» Globalization /Bk >0 [Levenberg, 1944; Marquardt, 1963]

Global complexity bounds? <« a suitable problem class?
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Recent advancements: Holder Hessian

I. Functions with H6lder Hessian, for v € [0, 1]:

IV2f(x) = V*f(y)ll < Loplx—yll",  V¥x,y €R”
[Nesterov-Polyak, 2006; Cartis-Gould-Toint, 2011; Grapiglia-Nesterov, 2017;
D-Nesterov, 2021]

» v = 1: Lipschitz Hessian (Cubic Regularization)
» v = 0: Functions with bounded variation of the Hessian

NB: Lo < 2Ly, where L; is the Lipschitz constant of the gradient

X1 = xx — (V2F(xi) + BkB) T VF ()

Theorem [D-Mishchenko-Nesterov, 2022]. Set

1
B = (6L [[VF (i) [|3)

Then, we have the global rate:

1+v
flxg)—* < 6L27VD2+"<W> + HVf(xo)HDexp(—§)
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Recent advancements: Holder Third Derivative

Il. Functions with H6lder Third Derivative, for v € [0, 1]:
IV2F(x) = V() < Laallx—yll”,  ¥xy eR”

First attempt: High-order Tensor Methods:
3
: - Ls,
Xer1 = X+ al‘gfllnln[ > 7V + iy AP
i=1

[Birgin et al., 2017; Nesterov, 2019; Cartis-Gould-Toint, 2020; Grapiglia-Nesterov, 2020]

> Global rate: f(x) — F* < O(242™) = O(1/k®) for v = 1
» The inner subproblem is convex and efficiently solvable
[Nesterov, 2019]
Recent advancements: no need in third-order information V3f

1 —
Xep1 = X — (V2 (xi) + (6L3, || VF(xi)[I1T) 7 B) "V (x)

» The same global rates! [D-Mishchenko-Nesterov, 2022]
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Super-Universal Newton

» Instead of choosing v, we can use a simple adaptive search:

Init: Choose xp € R", go = ||Vf(x0)||«, and oo > 0.
lteration, k > 0:
1. Find smallest j, > 0 s.t. for By := #*o gk and for
Xt = = [V2F0) + BiB] TV (xi)
it holds
(VE(xT), e —xt) > o |[VAxH)2.

2. Set xx11 = xT, gkr1 = |[VF(xT) ||+, and o1 = Mfk

[D-Mishchenko-Nesterov, 2022]

» The method does not need to know any parameters
» Automatic adjustment to the right problem class
> In average: one extra oracle call per iteration
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Global complexities: Summary

Classical Newton's method

Xk+1 — Xk — (V2f(xk) + ﬁkB)_IVf(Xk)

with gradient regularization By o< ||V f(xk)[|¢

> fix a according to the problem class
> use adaptive search
Global Complexity: f(xx) — f* <e?
1. Bounded variation of the Hessian: k = (’)(Lz’oDz)

£

1/2
2. Lipschitz Hessian: k = O([Lz%m] )
1/3
3. Lipschitz Third Derivative: k = O([L3’;D4] )
4. ...Can we do better? Yes!
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Bounds on Third Derivative

Functions with Lipschitz Hessian:

V3 (X)[u,u,u] < Loaful?, VX, u

> Fixed global norm (no affine-invariance) ||u|| := (Bu, u)*/?

> Main example: f(x) = %|x|®
Self-Concordant functions [Nesterov-Nemirovski, 1994]:
V3 (), u,u] < My (V2F(X)u, u)32 = My ul2, Vx, u

» Affine-invariant

» Efficiency of the damped Newton method for logarithmic
barriers, e.g. f(x) = —Inx
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Quasi-Self-Concordant Functions

> Global norm: ||ul| := (Bu, u)'/?
> Local norm: |[ullx := (V2f(x)u, u)*/?

Assume that f is quasi-self-concordant with constant M > 0:

VAl uv] < MIulElvIL, - Yu,v

» Combination of the Lipschitzness and classic Self-Concordance

[Bach, 2010; Sun—Tran-Dinh, 2019; Karimireddy—Stich—Jaggi, 2018]
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Examples

VEF()[u, u,v] < MJulZ]|v]]

Example 0: f is quadratic. Then .
Example 1: f(x) = eX. Then f”(x) = f"(x) = e = M = 1],
Example 2: f(x) =In(1+ €¥). Then
Fix) = e (%) = F(x)-(1-f(x),
(x) = f"(x)-(1-2f"(x)).
Thus

) = f(x)1- 2= < f(x) = [M=1]
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Examples
Example 3: (Generalized Linear Models):
) = &3 él(an),
and ¢ : R — R is quasi-SC loss function = f(x) is quasi-SC.
Example 4: (Soft Maximum):

minf(x) := pln( ’i exp(<a"’)2_b")> ~  max [(aj,x) — bj].

X 1<i<m

m
for B:= 3 aja .
=1

1=

f(x) is quasi-SC with | M =

2
n

Example 5: (Matrix Scaling, A € R}*"):

f(x,y) = > AjeNiTN, x,y € R"
1<ij<n

is quasi-SC with | M = /2 | for B := |.
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Basic Operations

1.

2.

f(-) = fi(-) + f2(-) is quasi-SC with M = max{ M, M,}

Adding to f an arbitrary convex quadratic function does not
change M

. Scale-invariance: f(-) — cf(:), ¢ > 0, does not change M

For an affine substitution, f(x) = g(Ax + b), we need to
update the global norm:

Bf = ATB,A

(no affine invariance)
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Main Bounds

Lemma. for quasi-SC f we have, for any x, y:
V2f(x)e M=yl < V2f(y) =< V2f(x)eMlx—l

1 -

= the Hessian is stable: Forany x,y s.t. [[x —y|| < r:= ¢; it

holds

1

IV (x) = f(y) = eV3f(x).
[Cohen-Madry-Tsipras-Vladu, 2017; Karimireddy-Stich-Jaggi, 2018]
Define o(t) := €=t=1 > 0

+2

» convex
» monotone
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Bounds on the Function

Using o(t) == et—tg—l > 0, we have global upper and lower

second-order models:

)
f(@) + (V@) y - =) + |y — |2 o(M|ly — ) !

-—
-

—__——

fl@) +(Vf(x).y —z)+[ly — |3 - o(-M|ly — z|])
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Gradient Regularization
Problem: min f(x), where f is quasi-SC
X
Consider one regularized Newton step, for 8 > 0:

x* = argmin| (VF(x),y = x) + 3y = xI2 + §lly = x|
y

& xT = x—[V?f(x)+ BB]"1Vf(x)

Lemma. Set 8 := o||Vf(x)|« and ¢ > M. Then,
1 |x* = x| < 4

[VF()]

*

2. |Ixt = x|z < g
3. (VF(xH),x = x¥) > 25[|VF(xT)|2

NB: by convexity, f(x) — f(x*) > %HVf(x*)Hf
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Main result

Xk+1 = Xk — (V2f(xk) + ,BkB)_1Vf(Xk)

Theorem. Set

Bi = MV (x|«

Then, we have the global linear rate:

flxk) =+ < eXP<—8,\%> (f(x0) = *) + eXP(-%)é’oD,
where D := max{||x — x*|| : f(x) < f(x0)}.

— the global complexity: O(/\/ID In g) to find f(x) — f* < e
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Proximal viewpoint

Proximal-Point Method:

s~ argmin|hily) = F(y) + Il - xl?]
y

[Moreau, 1965; Rockafellar, 1976; Martinet, 1978; Solodov-Svaiter, 2002]

Note: the subproblem h(-) is strongly convex with constant
W= ak -. We have

Vh(y) = VF(y)+3=B(y —xk).

3k+1
The neighborhood of local quadratic convergence:

’)
IVa(lle = IVExlls < i = mm-

—~

Set: |aky1 := SIS | = We can minimize hi(+) up to any

accuracy by Newton's method!
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Dual Newton Scheme

Init: xo € R", go = ||Vf(x0)l|+, and § > 0

Iteration, k > 0:
1. Set zg = xi
2. For t > 0 iterate:
» Perform Newton's step

Ze1 = zi— [V2f(2) + MgB] 'V F(z)

» Until ||Vf(zt+1) - Vf(zt) - V2f(zt)(zt+]_ - Zt)”* S

3. Set xx41 = zt4+1 and guq1 = ||V F(Xug1) |l

4. If gxr1 < 6 then return xxi1

2Mgk<§

(k+1)2
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Convergence of the Dual Newton

Theorem. We have the global linear rate for the gradient norm:

IVl < e (2M2(I1x0 — x*|> + 2612 = &) [V F(30) |-

The total number N, of second-order oracle calls is bounded as

Ne < k- <1+ ﬁlnln (I;J,(/,lgz).
= the method stops after O(M?||xp — x*||?) iterations.

+ Possibility of restarts
+ Convergence in terms of the gradient norm

— The condition number is worse: (MD)? vs. MD
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Acceleration

Idea. Contraction + regularization, for v € (0, 1), set
Ai = Ao(1 — )7k, Solve:

min[Ak(y) = Asaf (3 + (1= 1)x) + 3y = vl

Contracting Proximal Method. Iteration, k > 0:

Vkt1 A~ argmin hg(y)
y

Xk41 = YVikgr (1 —7)xk

[Nesterov, 1983; Giiler, 1991; Lin-Mairal-Harchaoui, 2018; D-Nesterov, 2020]
k

Theorem. Ay(f(xi) = ) +3 3 v = vial? < O(Jlxo —x*?)
i=1

» Global linear rate by design: f(xx) — f* < O(%)

» Control over ||v; — vj_1]]
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Choice of ~

How to minimize vi1 ~ argmin hy(y)?
y

Consider (y) = f(vy + (1 —7)x), 7€ (0,1)
> v =0, we have p(y) = f(xx)
> ~v =1, we have p(y) = f(y)

The parameter of quasi-SC is

Hence, the Dual Newton Method needs the following number of

iterations at step k > 0, to approximate v; = argmin hy(y):
y

e < O(M2lve—iI?) = O(M2lve — vl
Totally, after k steps:

k 202 K 2 2702 2
Sl < O(FM2 Y v = vial?) < O(7MEllxo —x*|12)
i=1 i=1

—
~
=
=2 |

= optimal choice: |y = [M¢|[xo — x*||] 2
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Summary

Problem: mXin f(x), where f is quasi-SC with parameter M > 0
1. Primal Newton with Gradient Regularization:
O(MD In %) second-order oracle calls for f
2. Dual Newton:
O([MHXO — x*|”2 In % Inin 6%)
3. Accelerated Newton:
O([Mllxo — x*11]*%)

Optimal? Most probably yes!

» Matches the lower bound for the ball minimization oracle
[Carmon-Jambulapati-Jiang-Jin-Lee-Sidford-Tian, 2020]
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Experiment: Soft Maximum

min f,(x)

Iterate kK > 0:

M1 = o (V20 + (VAN B) T V()

Soft Maximum, n=500, m=1000, u=0.05 Soft Maximum, n =500, m=1000, u=0.05

©
S
3
D 03 10
8 10 &
5]
S 10 W — a=1 a‘-"
[ .
- a=2/3 .‘,’
1077 10-8 a=1/2 -
== a=0 -
0 100 200 300 400 500 0 100 200 300 400 500
Iterations Iterations
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Conclusions

» Quasi-SC functions = loss functions with exponential tails
» The Newton method is very efficient in this case (fast global
linear rate): O(MD In %)
> We can accelerate: MD — (MD)>?/3
» Solving
min [F(x) — f(x) + @z}(x)}

is as difficult as

min [(Ax,x) — (b, x) + ¢(X)}

X
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Open Questions

» Lower complexity bounds

» Practical accelerated schemes (currently, no local superlinear
convergence)

» Comparison with polynomial-time Interior-Point schemes

» Consequences for non-convex optimization

Thank you for your attention!
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