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The Goal: efficient second-order optimization methods with
global convergence guarantees.

» The rate should be better than that of the first-order methods

> We analyse the complexity of the methods alongside suitable
problem classes

» Implementable algorithms
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Continuous Optimization

min f(x), x € R”

f is differentiable; Vf(x) € R" — gradient of the function,

(ViD= 2 1<i<n

The Gradient Method
Iterate, for kK > 0:

Xkr1 = xx —axVf(xx), forsome ) >0

[Cauchy, 1847]

+ Cheap iterations:  O(n)
+ Global convergence
— Slow rate:  f(x,) — f* < O(1/k)
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The Gradient Method: Trajectory

Xk+1 = Xk—Oszf(Xk)

169@
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Complexity Theory

min ()] ()

f is convex and differentiable; the gradient is Lipschitz continuous;
dimension n is big.

[Nemirovski-Yudin, 1979]: Any first-order method solving (*) needs
at least (’)(\%) iterations to solve the problem with ¢ accuracy:

fx) - < e

» The Gradient Method: (9(%) — not optimal
» The Fast Gradient Method: (’)(\%) [Nesterov, 1983] — optimal

> | Better rates? — impossible for the first-order methods‘
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Newton’s Method

in
i )

The Hessian V2f(x) € R"*" is the second-order information about
the objective,

.. 2£(x L.
V()]0 = 20 1<ij<n

A full quadratic model of the objective, f(y) ~ Qa(x;y), where

E )+ (VF(x),y — x) + LV — %),y — x).

Qo(x;y)

Newton’s Method. lterate, for k > 0:

Xk+1 = argmin Qo(xk;y)
yeR”n

= xk — V2 (x) IV (%)

[Newton, 1669; Raphson, 1690; Fine-Bennett, 1916; Kantorovich, 1948]
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Newton’s Method: Trajectory

Xk41 = xk—sz(xk)_1Vf(xk)

169@
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Newton’s Method: Analysis

Xk4+1 = Xk—vzf(Xk)_IVf(Xk)

» Solving a linear system requires O(n3) per iteration

» Fast local convergence:

O(loglog 1)

iterations to find an e-solution, when in the neighbourhood
of the optimum

» Global convergence — 7
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Newton’s Method: Global Behaviour

102

: o 1 B® 2
Lnelﬂg{f(x) = log(1 +exp(x)) — 5x + 5x }, ,u

» The objective is smooth and strongly convex; x* = 0.

Objective Derivative
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The method oscillates between two points!
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How to Fix the Newton Method?

» Damped Newton step [Kantorovich, 1948]
Xk+1 = Xk — (kazf(xk)_IVf(Xk), oy € (O, 1]

» Quadratic regularization
[Levenberg, 1944; Marquardt, 1963]

xee1 = xi— (V2F(xk) + ozk/)_IVf(Xk)

» Trust-region approach
[Goldfeld-Quandt-Trotter, 1966; Conn-Gould-Toint, 2000]

Xkr1 =  argmin Qo(xk;y)
ly —xkl| <Ak

Works well in practice. Difficult to establish good global rates
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The Gradient Method: a Modern View

in f
ip f)

Assumption: gradient is Lipschitz continuous
IVE(y) = VI < Llly=x[l,  Vx,y eR”

fly) < F)+(VFx),y —x) + Zlly — x|

The Gradient Step minimizes the model of the objective:

Xk+1

= argmin| () + (V) y = xk) + 31l = xel?]

yeRn

= xx— L%Vf(xk)
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Cubic Regularization of Newton’'s Method

m]iIQ f(x)| New assumption: Hessian is Lipschitz continuous
xeR"

IV2£(y) = V20l < Lally —xIl,  Vx,y €R”

= fly) < Qlxy)+ 2y x|

where 2 is the second-order Taylor approximation of f.

Newton method with cubic regularization:
. def
Xep1 = argggm[MH(xk;y) = Qxy) + Ally — xilP
yeRr?
~1
= x; — (V2f(xk)—|— H||Xk+é—XkH’) V(%)

Theorem. Set H := L,. Then, f(xx) — f* < O(1/k?)
[Nesterov-Polyak, 2006]
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Adaptive Cubic Newton

Iterate, for kK > 0:

Xkl = argmin[l\/lH(xk;y)}
yeR?

= x— (V2F (i) + 2 IV F ()

» H:=0 = the classical Newton's Method

» Constant choice H := L,

» Adaptive strategy [Nesterov-Polyak, 2006; Cartis-Gould-Toint,
2011; Grapiglia-Nesterov, 2017] ensures f(xx+1) < My (xk; Xk+1)
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Algorithm

Let TH(x) def aflgerﬂrg,}n[MH(X y)} M, (x )dEf yng]lR? [MH(X )’)}

Algorithm 1 Adaptive Cubic Newton

Initialization: Choose xg € R", Hy > 0.
lterations: k > 0.

1: Find minimum integer i, > 0 s.t. it holds

F(Th2i (%K) < M o0 (%k)-

2: Make the Cubic step xit1 := Ty oi (Xk)-
3: Set Hyy1 = szikil.
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Uniformly Convex Functions
f is called uniformly convex of degree g > 2 with o4 > 0, iff

Fly) = f(x)+(VF(x),y —x)+ 2y —x[9, V¥xy

» Example: f(x) = %Hx — xp||? is uniformly convex of degree g

with constant oq = 22-9

» Sum of convex and uniformly convex functions gives uniformly
convex
» Strongly convex functions: g = 2. GM: global linear rate.

Second-order methods — 7
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Global Lower Model

> Let V2f be Lipschitz continuous
» Let f be uniformly convex of degree g =3

Theorem. We have a global lower bound, Vx, y:
fly) = )+ (VE(x),y =x)
+ 3V = x)y = x) + Ty = X
where v > £ min{1, 5 T2} is a condition number.

Recall the global upper model:

Fy) < FO)+ (VF(X),y —x) + HV2F(x)(y — x),y — x) + Ll
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Global Linear Rate

Cubic Newton, with H := Ly:

Xk41 = argmin [Qg(xk;y) + %Hy — xi||3
yeR?

Theorem. f(xx11) — F* < (1 —~)(F(xx) — ).
Proof:

Y+ (=) (%)
lower

> f(xk) + v (VF(xk), x* — xk)

2 3
+ TV () (XF — xi), X — xe) + T2 [1x* — xe?

Denote y := xx + v(x* — xk). Then y — xx = v(x* — x¢).
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Proof: continue

We have
Y4 (1 =) ()
> f(xk) +(VF(xk), y — xk)

+ V(i) (y — %),y — xi) + 2y — x®

method

= ) + (VF(xi), Xier — i)
+ 2V (gt — Xu)s Xt — Xi) + 2 |xie1 — xe®

upper
> f(Xk+1)

Hence,
f(xey1) —F* < (1— ’7)(f(xk) - f*)'
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Universal Complexity

» Let Hessian be Holder continuous of degree v € [0, 1]:
IV2F(x) = V2F(W)Il < Hollx =yl

> Let f be uniformly convex of degree g =2 + v.

Condition number of degree v:

1
def L\ T+
w 2 (%)

Theorem. [D-Nesterov, 2019]: The global complexity of the
adaptive Cubic Newton is

. 1 F(x0)—F*
%g?ofu [ 7] tog 1)

Note: vt = Hzo < Ll "2 <k o = Cubic Newton is better
than the Gradient Method
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How to Compute lteration?

-1
Cubic step:  xt = x — (v2f(x)+”g*/) V().

where r™ = ||[x* — x|| is the root of 1-D equation h(r) = 0:

15

h(r)

-5
00 05 10 15 20 25 30 35 40
r

We can apply any one-dimensional method (bisection, Newton, ...)
» (O(1) matrix inversions, or one matrix factorization — O(n3)

Gradient regularization
[Ueda-Yamashita, 2014; Mishchenko, 2021; D-Nesterov, 2021]:

xT = x — (sz(x)—|—\/7H”V;(X)”/)_1Vf(x)

» One matrix inversion; fast global rates
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Stochastic Subspace Cubic Newton

in
i 700

where n is Huge

» even O(n) per iteration can be expensive

|dea: sample random coordinates S C {1, ..., n} of size 7 = |§]
and apply one step of the Cubic Newton along these coordinates

» The cost of each step is O(73)

[D-Richtarik, 2018; Hanzely-D-Richtarik-Nesterov, 2020]

Theorem. The method converges globally, after k iterations:

Bfl) — 1 <O(" 4+ ()7 )
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Experiment
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Contraction Technique
Let us consider contraction of the objective:

g(x) = f(xx+(1-79)%), ~yelo,1]

y=1 y=0.8 y=0.7 y=0.6
Note
Vg(x) = ~VFf(...),

Vig(x) = APVPf(...),

Smoothness properties of g(-) are better than that of f(-)
Idea: use v to balance the error of g(x) & f(x) and smoothness
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Contracting-Point Methods

inf
min f(x)

where @ C R" is a bounded convex set, e.g.:

Il
8

T $
3simplex

Conceptual Contracting-Point Method. lterate, kK > 0:

Vipr A argmin f(yev + (1 — v)xx),
veEQR

Xe+r1 = Vi1 + (1 — vi)xk

Approximate f by p-th order Taylor's polynomial.

o p = 1: The Conditional Gradient Method [Frank-Wolfe, 1956]
o p = 2: Contracting Newton [D-Nesterov, 2020]
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Contracting Newton

inf
g "%

Iterate, for k > O:

Xkr1 = argmin{ Qa(xk; y) v € xk + (Q — xx) }
y

where €, is the second-order approximation of f

» v, = 1. The classical Newton's Method

> Interpretation: regularization of quadratic model by the
assymmetric trust region

Theorem. Set v, = 25 = global rate: f(x)— f* < O(1/k?)

+3
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Contracting Newton: Interpretation

1. fis convex: f(y) > f(x) + (VF(x),y — x)
2. V?f is Lipschitz continuous:

Convexity + Smoothness = tighter lower bound: 3v, , € (0, 1]
fly) = f(x) +(VE(x),y = x) + ZZ(V2F(x)(y = x), ¥ — x)

4

IV2F(x) = V2F(y)Il < Lollx—yll

—-— Second-order
------- First-order

-3 -2 -1 0 1 2 3 4
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Cubic Newton vs. Contracting Newton

Cubic Newton, Hy Contracting Newton,
global upper approximation global lower model
fixed Euclidean norm affine-invariant
- bounded domain

Complexity

» Convex functions: (’)(ﬁ); Ve = 357
ions: flxo)=f"y. o _ _1
> Strongly convex functions: O(w log ==2—); 7% = 135

» Local quadratic convergence: v, =1
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Inexact Contracting Newton

Xkr1 = argmin{ Qo(xk;y) @y € xk +7(Q — xk) }
y

How to compute the iteration?

» At each step we solve the subproblem inexactly by the
first-order Frank-Wolfe algorithm

» We have full control over the required accuracy

Theorem. To reach f(xx) — f* < ¢ it needs
o K= O(%) oracle calls for

o O(%) linear minimization oracle calls for Q totally
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Experiment: Log-sum-exp over the Simplex

min {f(x) = ulog( i e(<af’x>_bf)/”) : ,gnl x() = 1}

i=1

n =100, m = 2500, mu = 0.05 (c = 0.05)

10-2 | === Frank-Wolfe
—— Contr.Newton

Function value

0.00 025 050 075 1.00 1.25 1.50 1.75 2.00
Time, s

two times faster
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Stochastic Methods

Finite-sum minimization: f(x) = ﬁ

Mz

fi(x)

Il
MR

Big M = computing Vf(x) and V2f(x) is expensive
|dea: sample random batch B C {1,..., M} and approximate

Vf(x) =~ éVf( x), V2f(x) =~ |B| ;VZ (%)

Idea #2: at some iterations recompute the full gradient and
Hessian — variance reduction [Schmidt-Roux-Bach, 2011]

New algorithm: Stochastic Contracting Newton Method with
global complexities: (’)(al%) iterations and (’)(63%) total random
samples among all batches
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Experiments: Stochastic Methods for Logistic Regression

YearPredictionMSD, D = 20

Func. residual

SGD

—— SVRG

SNewton

-'-.-- s -— SVRNewton
o . .-. by

The problem with big dataset size (M = 463715) and small

dimension (n = 90)

0 50 100
Epochs

150

200

31/35



Plan of the Talk

I. Intro

o Gradient methods

o Newton's method, classical approach
Il. Modern techniques

o Cubic regularization
o Contracting-point methods
o Acceleration

I1l. Conclusions



Acceleration

Problem class: convex functions with Lipschitz Hessian

Basic Cubic Newton: f(xx) — f* < O(1/k?)

Accelerated Cubic Newton: O(1/k3) [Nesterov, 2008]

Accelerated second-order prox: O(1/k3°)  [Monteiro-Svaiter, 2013]
(extra one-dimensional search each iteration)

Optimal rate, matching the lower bound [Arjevani-Shamir-Shiff, 2019]

Problem class: convex functions with bounded second and fourth
derivatives

Superfast second-order schemes: O(1/k®) [Nesterov, 2020;
Kamzolov-Gasnikov, 2020]

> Approximation of third derivative by finite-differences
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General Accelerating Scheme

» Contracting-Point Method:

Vb1 ~  argmin f(yex 4 (1 — yi)xk),
xXEQR

X1 = YVt + (1 — vi)Xk-

One step of 2-order Taylor's approximation = O(1/k?)-rate.

» Contracting Proximal Method [D-Nesterov, 2019]:

Vik+1

Xk+1

~
~

argncl)in{ F(yix + (1= )xk) + g Ba(vs x) }
X€E

YiVier1 + (1 — 7k ) Xk

Ba(vi; x) = d(x) — d(vk) — (Vd(vk),x — vk) is Bregman divergence

Theorem. Set d(x) = 3|Ix[*, Ay =&, o =1-

A
Aks1’

then

O(1) steps of the basic method = O(1/k>)-rate.
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Conclusions
. To globalize the Newton's method we need to do regularization

» Cubic Newton — explicit regularizer, || - ||

» Contracting Newton — implicit regularization by contraction
» Acceleration: prox-point and contracting-point together

. We can solve the composite problems

min{ Flx) = f(x)+¢(x)}

and
min{ F(x) = o(F(x) }
where f is a smooth component

. In practice: we can use stochastic approximations and inexact
methods with first-order subsolvers, preserving the global rates
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Open Questions

Efficient implementation: parallel and distributed systems

Note: computation of V2f(x)h for any h € R" has the same
cost as for V£ (x)

Worst-case complexities can be too pessimistic

= benefits of using two-level schemes

Theory of the Damped Newton: x* = x — aV2f(x)"1Vf(x)

Hint: different problem classes
o Self-Concordant Functions [Nesterov-Nemirovski, 1994;
Dvurechensky-Nesterov, 2018]
o Generalized S.C. [Bach, 2010; Sun-Tran-Dinh, 2019]
o Hessian Stability [Karimireddy-Stich-Jaggi, 2018]

Quasi-Newton methods

Nonconvex problems
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