Second-order methods with global convergence in Convex Optimization

Nikita Doikov

UCLouvain, Belgium

June 3, 2022

The Goal: efficient second-order optimization methods with global convergence guarantees.

- ► The rate should be better than that of the first-order methods
- We analyse the complexity of the methods alongside suitable problem classes
- Implementable algorithms

Plan of the Talk

- I. Intro
 - Gradient methods
 - Newton's method, classical approach

II. Modern techniques

- Cubic regularization
- Contracting-point methods
- Acceleration

III. Conclusions

Continuous Optimization

$$\min_{x} f(x), \qquad x \in \mathbb{R}^{n}$$

f is differentiable; $\nabla f(x) \in \mathbb{R}^n$ — gradient of the function,

$$\left[\nabla f(x)\right]^{(i)} = \frac{\partial f(x)}{\partial x^{(i)}}, \qquad 1 \leq i \leq n$$

The Gradient Method

Iterate, for $k \ge 0$:

$$x_{k+1} := x_k - \alpha_k \nabla f(x_k), \text{ for some } \alpha_k > 0$$

[Cauchy, 1847]

- + Cheap iterations: $\mathcal{O}(n)$
- + Global convergence
- Slow rate: $f(x_k) f^* \leq \mathcal{O}(1/k)$

The Gradient Method: Trajectory

Complexity Theory

$$\min_{x \in \mathbb{R}^n} f(x) \qquad (*)$$

f is convex and differentiable; the gradient is Lipschitz continuous; dimension n is big.

[Nemirovski-Yudin, 1979]: Any first-order method solving (*) needs at least $\mathcal{O}(\frac{1}{\sqrt{\varepsilon}})$ iterations to solve the problem with ε accuracy:

$$f(\bar{x}) - f^* \leq \varepsilon$$
.

- ▶ The Gradient Method: $\mathcal{O}(\frac{1}{\varepsilon})$ not optimal
- ► The Fast Gradient Method: $\mathcal{O}(\frac{1}{\sqrt{\varepsilon}})$ [Nesterov, 1983] optimal
- ▶ Better rates? impossible for the first-order methods

Newton's Method

$$\min_{x\in\mathbb{R}^n}f(x)$$

The Hessian $\nabla^2 f(x) \in \mathbb{R}^{n \times n}$ is the second-order information about the objective,

$$[\nabla^2 f(x)]^{(i,j)} = \frac{\partial^2 f(x)}{\partial x^{(i)} \partial x^{(j)}}, \qquad 1 \le i, j \le n$$

A full quadratic model of the objective, $f(y) \approx \Omega_2(x; y)$, where

$$\Omega_2(x;y) \stackrel{\text{def}}{=} f(x) + \langle \nabla f(x), y - x \rangle + \frac{1}{2} \langle \nabla^2 f(x)(y - x), y - x \rangle.$$

Newton's Method. Iterate, for $k \ge 0$:

$$x_{k+1} := \underset{y \in \mathbb{R}^n}{\operatorname{argmin}} \Omega_2(x_k; y)$$

= $x_k - \nabla^2 f(x_k)^{-1} \nabla f(x_k)$

[Newton, 1669; Raphson, 1690; Fine-Bennett, 1916; Kantorovich, 1948]

Newton's Method: Trajectory

Newton's Method: Analysis

$$x_{k+1} := x_k - \nabla^2 f(x_k)^{-1} \nabla f(x_k)$$

- ▶ Solving a linear system requires $\mathcal{O}(n^3)$ per iteration
- Fast local convergence:

$$\mathcal{O}(\log\log\frac{1}{\varepsilon})$$

iterations to find an ε -solution, when in the neighbourhood of the optimum

► Global convergence — ?

Newton's Method: Global Behaviour

$$\min_{x \in \mathbb{R}} \Big\{ f(x) \ := \ \log(1 + \exp(x)) - \tfrac{1}{2}x + \tfrac{\mu}{2}x^2 \Big\}, \qquad \mu \ := \ 10^{-2}.$$

▶ The objective is smooth and strongly convex; $x^* = 0$.

The method oscillates between two points!

How to Fix the Newton Method?

Damped Newton step [Kantorovich, 1948]

$$x_{k+1} = x_k - \alpha_k \nabla^2 f(x_k)^{-1} \nabla f(x_k), \qquad \alpha_k \in (0,1]$$

► Quadratic regularization

[Levenberg, 1944; Marquardt, 1963]

$$x_{k+1} = x_k - (\nabla^2 f(x_k) + \frac{\alpha_k I}{\alpha_k I})^{-1} \nabla f(x_k)$$

► Trust-region approach [Goldfeld-Quandt-Trotter, 1966; Conn-Gould-Toint, 2000]

$$x_{k+1} = \underset{\|y-x_k\| \leq \Delta_k}{\operatorname{argmin}} \Omega_2(x_k; y)$$

Works well in practice. Difficult to establish good global rates

Plan of the Talk

- I. Intro
 - Gradient methods
 - Newton's method, classical approach

II. Modern techniques

- Cubic regularization
- Contracting-point methods
- Acceleration

III. Conclusions

The Gradient Method: a Modern View

$$\min_{x\in\mathbb{R}^n}f(x)$$

$$\frac{\min\limits_{x\in\mathbb{R}^n}f(x)}{\|\nabla f(y)-\nabla f(x)\|} \leq L_1\|y-x\|, \quad \forall x,y\in\mathbb{R}^n$$

$$\Rightarrow$$
 $f(y) \leq f(x) + \langle \nabla f(x), y - x \rangle + \frac{L_1}{2} ||y - x||^2$

The Gradient Step minimizes the model of the objective:

$$\begin{aligned} x_{k+1} &= & \underset{y \in \mathbb{R}^n}{\operatorname{argmin}} \Big[f(x_k) + \langle \nabla f(x_k), y - x_k \rangle + \frac{L_1}{2} \|y - x_k\|^2 \Big] \\ &= & x_k - \frac{1}{L_1} \nabla f(x_k) \end{aligned}$$

Cubic Regularization of Newton's Method

$$\min_{x\in\mathbb{R}^n}f(x)$$

New assumption: Hessian is Lipschitz continuous

$$\|\nabla^2 f(y) - \nabla^2 f(x)\| \le L_2 \|y - x\|, \quad \forall x, y \in \mathbb{R}^n$$

$$\Rightarrow f(y) \leq \Omega_2(x;y) + \frac{L_2}{6} ||y - x||^3,$$

where Ω_2 is the second-order Taylor approximation of f.

Newton method with cubic regularization:

$$\begin{array}{rcl} x_{k+1} & = & \displaystyle \operatorname*{argmin}_{y \in \mathbb{R}^n} \Big[M_H(x_k; y) & \stackrel{\text{def}}{=} & \Omega_2(x_k; y) + \frac{H}{6} \|y - x_k\|^3 \Big] \\ & = & x_k - \left(\nabla^2 f(x_k) + \frac{H \|x_{k+1} - x_k\|I}{2} \right)^{-1} \nabla f(x_k) \end{array}$$

Theorem. Set $H := L_2$. Then, $f(x_k) - f^* \le \mathcal{O}(1/k^2)$ [Nesterov-Polyak, 2006]

Adaptive Cubic Newton

Iterate, for $k \ge 0$:

$$x_{k+1} := \underset{y \in \mathbb{R}^n}{\operatorname{argmin}} \left[M_H(x_k; y) \right]$$
$$= x_k - \left(\nabla^2 f(x_k) + \frac{H r_k}{2} I \right)^{-1} \nabla f(x_k)$$

- $ightharpoonup H := 0 \Rightarrow$ the classical Newton's Method
- ▶ Constant choice $H := L_2$
- ▶ Adaptive strategy [Nesterov-Polyak, 2006; Cartis-Gould-Toint, 2011; Grapiglia-Nesterov, 2017] ensures $f(x_{k+1}) \leq M_H(x_k; x_{k+1})$

Algorithm

Let
$$T_H(x) \stackrel{\text{def}}{=} \underset{y \in \mathbb{R}^n}{\operatorname{argmin}} \Big[M_H(x; y) \Big], \ M_H^*(x) \stackrel{\text{def}}{=} \underset{y \in \mathbb{R}^n}{\min} \Big[M_H(x; y) \Big]$$

Algorithm 1 Adaptive Cubic Newton

Initialization: Choose $x_0 \in \mathbb{R}^n$, $H_0 > 0$.

Iterations: $k \ge 0$.

1: Find minimum integer $i_k \ge 0$ s.t. it holds

$$f(T_{H_k2^{i_k}}(x_k)) \leq M_{H_k2^{i_k}}^*(x_k).$$

- 2: Make the Cubic step $x_{k+1} := T_{H_k 2^{i_k}}(x_k)$.
- 3: Set $H_{k+1} := H_k 2^{i_k 1}$.

Uniformly Convex Functions

f is called uniformly convex of degree $q \ge 2$ with $\sigma_q > 0$, iff

$$f(y) \geq f(x) + \langle \nabla f(x), y - x \rangle + \frac{\sigma_q}{q} ||y - x||^q, \quad \forall x, y$$

- **Example**: $f(x) = \frac{1}{q} ||x x_0||^q$ is uniformly convex of degree q with constant $\sigma_q = 2^{2-q}$
- Sum of convex and uniformly convex functions gives uniformly convex
- **Strongly convex functions**: q = 2. **GM**: global linear rate.

Second-order methods — ?

Global Lower Model

- ▶ Let $\nabla^2 f$ be Lipschitz continuous
- ▶ Let f be uniformly convex of degree q = 3

Theorem. We have a global lower bound, $\forall x, y$:

$$f(y) \geq f(x) + \langle \nabla f(x), y - x \rangle$$
$$+ \frac{\gamma}{2} \langle \nabla^2 f(x)(y - x), y - x \rangle + \frac{\gamma^2 L_2}{6} ||y - x||^3$$

where $\gamma \geq \frac{1}{2} \min\{1, \frac{2}{3} \sqrt{\frac{\sigma_3}{L_2}}\}$ is a condition number.

Recall the global *upper model*:

$$f(y) \leq f(x) + \langle \nabla f(x), y - x \rangle + \frac{1}{2} \langle \nabla^2 f(x)(y - x), y - x \rangle + \frac{L_2 ||y - x||^3}{6}$$

Global Linear Rate

Cubic Newton, with $H := L_2$:

$$x_{k+1} = \underset{y \in \mathbb{R}^n}{\operatorname{argmin}} \left[\Omega_2(x_k; y) + \frac{H}{6} ||y - x_k||^3 \right]$$

Theorem. $f(x_{k+1}) - f^* \le (1 - \gamma)(f(x_k) - f^*)$. Proof:

$$\begin{split} & \gamma f^* + (1 - \gamma) f(x_k) \\ & \stackrel{\text{lower}}{\geq} & f(x_k) + \gamma \langle \nabla f(x_k), x^* - x_k \rangle \\ & + \frac{\gamma^2}{2} \langle \nabla^2 f(x_k) (x^* - x_k), x^* - x_k \rangle + \frac{\gamma^3 L_2}{6} \|x^* - x_k\|^3 \end{split}$$

Denote $y := x_k + \gamma(x^* - x_k)$. Then $y - x_k = \gamma(x^* - x_k)$.

Proof: continue

We have

$$\gamma f^* + (1 - \gamma) f(x_k)$$

$$\geq f(x_k) + \langle \nabla f(x_k), y - x_k \rangle$$

$$+ \frac{1}{2} \langle \nabla^2 f(x_k) (y - x_k), y - x_k \rangle + \frac{L_2}{6} || y - x_k ||^3$$

$$\stackrel{\text{method}}{\geq} f(x_k) + \langle \nabla f(x_k), x_{k+1} - x_k \rangle$$

$$+ \frac{1}{2} \langle \nabla^2 f(x_k) (x_{k+1} - x_k), x_{k+1} - x_k \rangle + \frac{L_2}{6} || x_{k+1} - x_k ||^3$$

$$\stackrel{\text{upper}}{\geq} f(x_{k+1})$$

Hence,

$$f(x_{k+1}) - f^* \le (1 - \gamma)(f(x_k) - f^*).$$

Universal Complexity

▶ Let Hessian be Hölder continuous of degree $\nu \in [0,1]$:

$$\|\nabla^2 f(x) - \nabla^2 f(y)\| \le \mathcal{H}_{\nu} \|x - y\|^{\nu}$$

▶ Let f be uniformly convex of degree $q = 2 + \nu$.

Condition number of degree ν :

$$\gamma_{\nu} \stackrel{\text{def}}{=} \left(\frac{\sigma_{2+\nu}}{\mathcal{H}_{\nu}}\right)^{\frac{1}{1+\nu}}$$

Theorem. [D-Nesterov, 2019]: The global complexity of the adaptive Cubic Newton is

$$\mathcal{O}\Big(\inf_{oldsymbol{
u} \in [0,1]} ig[oldsymbol{\gamma_{
u}}^{-1}ig] \log rac{f(x_0) - f^*}{arepsilon}\Big)$$

Note: $\gamma_0^{-1} = \frac{\mathcal{H}_0}{\sigma_2} \le \frac{L_1 - \sigma_2}{\sigma_2} < \frac{L_1}{\sigma_2} \implies \text{Cubic Newton is better}$ than the **Gradient Method**

How to Compute Iteration?

Cubic step:
$$x^+ = x - \left(\nabla^2 f(x) + \frac{Hr^+}{2}I\right)^{-1} \nabla f(x),$$

where $r^+ = ||x^+ - x||$ is the root of 1-D equation h(r) = 0:

We can apply any one-dimensional method (bisection, Newton, ...)

 $ightharpoonup ilde{\mathcal{O}}(1)$ matrix inversions, or one matrix factorization $- \mathcal{O}(n^3)$

Gradient regularization

[Ueda-Yamashita, 2014; Mishchenko, 2021; D-Nesterov, 2021]:

$$x^{+} = x - (\nabla^{2} f(x) + \sqrt{\frac{H \|\nabla f(x)\|}{3}} I)^{-1} \nabla f(x)$$

One matrix inversion; fast global rates

Stochastic Subspace Cubic Newton

$$\min_{x\in\mathbb{R}^n}f(x)$$

where n is Huge

• even $\mathcal{O}(n)$ per iteration can be expensive

Idea: sample random coordinates $S \subset \{1, ..., n\}$ of size $\tau = |S|$ and apply one step of the Cubic Newton along these coordinates

▶ The cost of each step is $\mathcal{O}(\tau^3)$

[D-Richtárik, 2018; Hanzely-D-Richtárik-Nesterov, 2020]

Theorem. The method converges globally, after k iterations:

$$\mathbb{E}f(x_k) - f^* \leq \mathcal{O}\left(\frac{n-\tau}{\tau} \cdot \frac{1}{k} + \left(\frac{n}{\tau}\right)^2 \cdot \frac{1}{k^2}\right)$$

Experiment

$$\min_{x \in \mathbb{R}^d} f(x) = \sigma \log \left(\sum_{i=1}^m e^{(\langle a_i, x \rangle - b_i)/\sigma} \right) \approx \max_{i=1}^m \langle a_i, x \rangle - b_i$$

Plan of the Talk

- I. Intro
 - Gradient methods
 - Newton's method, classical approach

II. Modern techniques

- Cubic regularization
- Contracting-point methods
- Acceleration

III. Conclusions

Contraction Technique

Let us consider contraction of the objective:

$$g(x) := f(\gamma x + (1 - \gamma)\overline{x}), \quad \gamma \in [0, 1].$$

Note:

$$\nabla g(x) = \gamma \nabla f(...),$$

$$\nabla^2 g(x) = \gamma^2 \nabla^2 f(...),$$
...

Smoothness properties of $g(\cdot)$ are better than that of $f(\cdot)$ Idea: use γ to balance the error of $g(x) \approx f(x)$ and smoothness

Contracting-Point Methods

$$\min_{x \in Q} f(x)$$

 $\min f(x)$ where $Q \subset \mathbb{R}^n$ is a bounded convex set, e.g.:

Conceptual Contracting-Point Method. Iterate, k > 0:

$$v_{k+1} \approx \underset{v \in Q}{\operatorname{argmin}} f(\gamma_k v + (1 - \gamma_k) x_k),$$
 $x_{k+1} = \gamma_k v_{k+1} + (1 - \gamma_k) x_k$

Approximate f by p-th order Taylor's polynomial.

- p = 1: The Conditional Gradient Method [Frank-Wolfe, 1956]
- p = 2: Contracting Newton [D-Nesterov, 2020]

Contracting Newton

$$\min_{x\in Q}f(x)$$

Iterate, for k > 0:

$$x_{k+1} := \underset{y}{\operatorname{argmin}} \left\{ \Omega_2(x_k; y) : y \in x_k + \gamma_k(Q - x_k) \right\}$$

where Ω_2 is the second-order approximation of f

- $ho_k = 1$: The classical Newton's Method
- Interpretation: regularization of quadratic model by the assymmetric trust region

Theorem. Set
$$\gamma_k = \frac{3}{k+3} \implies \text{global rate: } f(x_k) - f^* \leq \mathcal{O}(1/k^2)$$

Contracting Newton: Interpretation

- 1. f is convex: $f(y) \ge f(x) + \langle \nabla f(x), y x \rangle$
- **2.** $\nabla^2 f$ is Lipschitz continuous:

$$\|\nabla^2 f(x) - \nabla^2 f(y)\| \le L_2 \|x - y\|$$

Convexity + Smoothness \Rightarrow tighter lower bound: $\exists \gamma_{x,y} \in (0,1]$

$$f(y) \geq f(x) + \langle \nabla f(x), y - x \rangle + \frac{\gamma_{x,y}}{2} \langle \nabla^2 f(x)(y - x), y - x \rangle$$

Cubic Newton vs. Contracting Newton

Cubic Newton, H_k	Contracting Newton, γ_k
global <i>upper</i> approximation	global <i>lower</i> model
fixed Euclidean norm	affine-invariant
-	bounded domain

Complexity

- ► Convex functions: $\mathcal{O}(\frac{1}{\sqrt{\varepsilon}})$; $\gamma_k = \frac{3}{3+k}$
- ▶ Strongly convex functions: $\mathcal{O}(\omega \log \frac{f(x_0) f^*}{\varepsilon})$; $\gamma_k = \frac{1}{1 + \omega}$
- ▶ Local quadratic convergence: $\gamma_k = 1$

Inexact Contracting Newton

$$x_{k+1} = \underset{y}{\operatorname{argmin}} \Big\{ \Omega_2(x_k; y) : y \in x_k + \gamma_k(Q - x_k) \Big\}$$

How to compute the iteration?

- At each step we solve the subproblem inexactly by the first-order Frank-Wolfe algorithm
- We have full control over the required accuracy

Theorem. To reach $f(x_K) - f^* \le \varepsilon$ it needs

- o $K = \mathcal{O} \left(\frac{1}{\sqrt{\varepsilon}} \right)$ oracle calls for f
- \circ $\mathcal{O}(\frac{1}{\varepsilon})$ linear minimization oracle calls for Q totally

Experiment: Log-sum-exp over the Simplex

$$\min_{x \in \mathbb{R}^n_+} \left\{ f(x) = \mu \log \left(\sum_{i=1}^m e^{(\langle a_i, x \rangle - b_i)/\mu} \right) : \sum_{i=1}^n x^{(i)} = 1 \right\}$$

two times faster

Stochastic Methods

Finite-sum minimization: $f(x) = \frac{1}{M} \sum_{i=1}^{M} f_i(x)$

Big $M \Rightarrow$ computing $\nabla f(x)$ and $\nabla^2 f(x)$ is expensive

Idea: sample random batch $B \subseteq \{1, \dots, M\}$ and approximate

$$\nabla f(x) \approx \frac{1}{|B|} \sum_{i \in B} \nabla f_i(x), \qquad \nabla^2 f(x) \approx \frac{1}{|B|} \sum_{i \in B} \nabla^2 f_i(x)$$

Idea #2: at some iterations recompute the full gradient and Hessian — variance reduction [Schmidt-Roux-Bach, 2011]

New algorithm: Stochastic Contracting Newton Method with global complexities: $\mathcal{O}(\frac{1}{\varepsilon^{1/2}})$ iterations and $\mathcal{O}(\frac{1}{\varepsilon^{3/2}})$ total random samples among all batches

Experiments: Stochastic Methods for Logistic Regression

The problem with big dataset size (M = 463715) and small dimension (n = 90)

Plan of the Talk

- I. Intro
 - Gradient methods
 - Newton's method, classical approach

II. Modern techniques

- Cubic regularization
- Contracting-point methods
- Acceleration

III. Conclusions

Acceleration

Problem class: convex functions with Lipschitz Hessian

```
Basic Cubic Newton: f(x_k) - f^* \leq \mathcal{O}(1/k^2)
Accelerated Cubic Newton: \mathcal{O}(1/k^3) [Nesterov, 2008]
Accelerated second-order prox: \mathcal{O}(1/k^{3.5}) [Monteiro-Svaiter, 2013] (extra one-dimensional search each iteration)
Optimal rate, matching the lower bound [Arjevani-Shamir-Shiff, 2019]
```

Problem class: convex functions with bounded <u>second</u> and <u>fourth</u> derivatives

Superfast second-order schemes: $\mathcal{O}(1/k^5)$ [Nesterov, 2020; Kamzolov-Gasnikov, 2020]

Approximation of third derivative by finite-differences

General Accelerating Scheme

Contracting-Point Method:

$$\begin{array}{ccc} v_{k+1} & \approx & \displaystyle \mathop{\mathrm{argmin}}_{x \in Q} f(\gamma_k x + (1 - \gamma_k) x_k), \\ x_{k+1} & = & \gamma_k v_{k+1} + (1 - \gamma_k) x_k. \end{array}$$

One step of 2-order Taylor's approximation $\Rightarrow \mathcal{O}(1/k^2)$ -rate.

Contracting Proximal Method [D-Nesterov, 2019]:

$$v_{k+1} \approx \underset{x \in Q}{\operatorname{argmin}} \left\{ f(\gamma_k x + (1 - \gamma_k) x_k) + \frac{1}{A_{k+1}} \beta_d(v_k; x) \right\},$$

$$x_{k+1} = \gamma_k v_{k+1} + (1 - \gamma_k) x_k.$$

$$\beta_d(v_k;x) = d(x) - d(v_k) - \langle \nabla d(v_k), x - v_k \rangle$$
 is Bregman divergence

Theorem. Set
$$d(x)=\frac{1}{3}\|x\|^3$$
, $A_k=\frac{k^3}{L_2}$, $\gamma_k=1-\frac{A_k}{A_{k+1}}$, then $\tilde{\mathcal{O}}(1)$ steps of the basic method \Rightarrow $\mathcal{O}(1/k^3)$ -rate.

Plan of the Talk

- I. Intro
 - Gradient methods
 - Newton's method, classical approach

II. Modern techniques

- Cubic regularization
- Contracting-point methods
- Acceleration

III. Conclusions

Conclusions

- 1. To globalize the Newton's method we need to do regularization
 - ▶ Cubic Newton explicit regularizer, $\|\cdot\|^3$
 - Contracting Newton implicit regularization by contraction
 - Acceleration: prox-point and contracting-point together
- 2. We can solve the composite problems

$$\min_{x} \left\{ F(x) := f(x) + \psi(x) \right\}$$

and

$$\min_{x} \left\{ F(x) := \phi(f(x)) \right\}$$

where f is a *smooth* component

3. In practice: we can use stochastic approximations and inexact methods with first-order subsolvers, preserving the global rates

Open Questions

- ▶ Efficient implementation: parallel and distributed systems Note: computation of $\nabla^2 f(x)h$ for any $h \in \mathbb{R}^n$ has the same cost as for $\nabla f(x)$
- ▶ Worst-case complexities can be too pessimistic
 - ⇒ benefits of using two-level schemes
- ► Theory of the Damped Newton: $x^+ = x \alpha \nabla^2 f(x)^{-1} \nabla f(x)$ Hint: different problem classes
 - Self-Concordant Functions [Nesterov-Nemirovski, 1994;
 Dvurechensky-Nesterov, 2018]
 - o Generalized S.C. [Bach, 2010; Sun-Tran-Dinh, 2019]
 - o **Hessian Stability** [Karimireddy-Stich-Jaggi, 2018]
- Quasi-Newton methods
- Nonconvex problems