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Theory Course in Continuous Optimization

The problem: min
P XEIQ )

> f: Q@ — R is the objective function
» x is the decision variable which belongs to a feasible set: x€ Q@ C R”"

Our goal: to find a best possible x*

Modern and classic applications:
» dimension n is huge (n = 102 for a frontier LLM)
» for Q are “difficult”

The scope of this course:
P design and analysis of optimization algorithms

» complexity theory — how to estimate their efficiency? which algorithm is better
and when?



Sources of Optimization Problems

Machine Learning, Al:
f(x) = loss of the model on training data
X are the weights of the model that we train

» Linear regression, Logistic regression, Neural networks (x € R")

Graphs:
f{x) = the value of the flow x in a network (x € Q, where Q is the set of flows)

Finance:
f{x) = the expected return for a portfolio selection x

» Notice that max f{x) = — min[—f(x)]
X X



Course Information

Instructor: Nikita Doikov —  please call me Nikita
Course website: doikov.com/teaching/orie6365-s26/ and Canvas
Disclaimer: this is a graduate-level theory course

Grading:
» Theory homeworks (around 3-4) ~ 50%
» Practical assignments (around 2) ~ 30%

» Final take-home exam ~ 20%

The first homework is already out! Due on January 31



https://doikov.com/teaching/orie6365-s26/

Today’s Outline

Terminology

Core components of algorithmic design

Analysis: grid search algorithm



General Forms of Optimization Problems

min f(x) where QCR”
x€Q

» Unconstrained optimization: Q = R"

» Smooth / Non-smooth problems: whether f: R” — R is "smooth” (at least
differentiable) / non-differentiable

» Constrained optimization: Q C R" is a constraint set

1. Simple constraints. For example, a ball in some norm || - ||, for R > 0:
Q = {xeR" : |x| <R}
"Simplicity” means that we can perform basic operations with Q efficiently, e.g.

projo(x) = argminyeq |y — x|

2. Functional constraints. Q@ = {X €Q:g(x) <0,...,gm(x) < 0}, for a simple Q C R”
where g; : Q — R are some functions.
NB: It is enough to use only "<" instead of ">" and "=".

» Convex optimization: @ is a convex set, and f: @ — R is a convex function



Types of Solutions

Optimization problem: mig fx)
x€

A point x € Q is called feasible point, and x ¢ Q is infeasible

A point x* € Q is called global solution if
fix) < Af(x), Vx e Q.
» An ideal goal, but can be difficult to find
» We will denote f* = f{x*) — sometimes it is easier to compute

A point x € Q is called local solution if there exists a neighborhood of X (an open set
U € R" containing X) such that

fx) < fx), V¥xeQnU.

» Usually much easier to find than a global solution



Why Continuous?

Continuous optimization means that the objective function fis continuous (or even
differentiable) and the variables x € Q C IR” can take continuous values.

A question: Will you keep attending this course?

1. Yes, I will. x€ {0,1} Very hard to predict reliably in practice (even for advanced
Al systems).

2. Probably. x € [0, 1] Easier to predict, e.g.: x> 0.8.

Continuous decisions are often easier to make than discrete ones.

» It is very fruitful to work with the continuous space of parameters




An Example of Constrained Problem

Let x € R and consider 2 functions:

gi(x) = -1, o(x)=1-x

» Both are continuous nice functions

» However, the constraint set
Q = {xeR: gi(x) <0, g2(x) <0}
= {XER : x2§1,x221}
= {xeR: =1} = {£1}

is discrete!

» Thus, m|n f(x) will be discrete problem
x€Q

» Problems with functional constraints can be hard even for "simple” functions



Example: Linear Programming

Linear Programming: both objective and constrains are linear / affine functions

» f(x) = (c,x) for some c € R"
> Forall1<i<m: gi(x)=(a,x)— b; where 3; € R", bje R
» We obtain the problem of minimizing a linear function over a polyhedron:

min{(c,x) : (a1,%) < bi, - (am) < b

» Matrix notation: form A € R™™ with a1,...,am € R" to be its columns:
A = [al a am} € R™™ and b = [byby - by]T € R™

Then Q = {XE R" : ATx< b}.
» An instance of the problem is given by input data: P= {A, b, c}.
» Linear programming is already non-trivial to solve.

This course: two polynomial-time algorithms for linear programming (ellipsoid
method and interior-point method)



Feasibility Problem
Let Q@ C R" be given.

Feasibility problem: to find x* € Q.  (an optimization problem with f=0)
Example

let Q = {xe€R": Ax=b} = {xeR": Ax—b<0,b—Ax <0}
Then the feasibility problem is to solve the linear system: Ax* = b.

O

Consider an optimization problem: mig f{x) with a function f: Q — R
S

» Introduce an extra variable t € R and extra constraint f{x) <t
» Then, min,cq f{x) is equivalent to the problem with linear objective:

min t
(xt)eq

where @ = {(x,t) e R"™ : x€ Q, fix) <t}

» Running binary search over t: an optimization problem = feasibility problem
» Feasibility problems are as hard as optimization ones



The Most Difficult Problem in the World

Let x* € R” be an arbitrary point.

Set
0, x=x*
flx) = {

1, everywhere else

min f{x) means to find x* (which is arbitrary!)

» Thus, we can encode any problem in the world as optimization problem

» NB: we can even make f continuous

‘Optimization problems are generally unsolvable

> We will investigate problem classes that we can solve by efficient algorithms

» For each problem class, we will associate its corresponding complexity



Problem Class

Imagine we have one fixed function: fp : R" — R that has global minimum x*.

The best algorithm for solving this problem?

» Perfect on functions with minimum x*

» Wrong on all other functions (silly method!)

Instead of fixing one function, we always fix a problem class P, a family of problems

Examples:
» P = {fy } consisting of one function — too small
» P ={f st feC(R")} consisting of all continuous functions — too large
» P = {f s.it. fisconvex and Vf is Lipschitz} — already much better
> P ={(f,Q) s.t. fislinear and Q is a polyhedron} LP — polynomially solvable
| 2

Performance of an algorithm is measured over all problems from P



Oracles

An oracle is how the algorithm gets access to the function

Most often, we will consider the black-box local oracles:

at any point x € @, an algorithm can "learn” a local information about objective

x = O(x)

» Zeroth-order oracle: O(x) = {f(x)}, only function values
» First-order oracle: O(x) = {f(x), Vf(x)}, function and gradient

» Second-order oracle: O(x) = {f(x), V(x), V?>f(x)}, function, gradient, and
Hessian



What is Optimization Algorithm?

A general scheme of an optimization method:

Initialization: xg € @
For k > 0 iterate:

Ik = {0O(x0),...,0(x«) } // collect information
If Si(Ix) then // stopping condition

return Ry(/x) // return the result
X1 = Ax(lk) // compute next point

To define the method we need to specify three sequences of mappings
» Main iterates: (Ag, A1,...)
» Stopping conditions: (S, S1,...)
» How to form the result: (Ro, R, ...)



Stopping Condition

In practice, we always run methods for a finite number of iterations

> We cannot hope to get exact solution x*

» Therefore, we always work with approximate solutions xx =~ x*, where x is the
result of the method

Measures of Inexactness (unconstrained minimization f* = min f(x)):
xER"

» Functional residual: flxx) — f* <e
> Pointwise distance: ||xx — x*|| <e
» Gradient norm: ||[VAxy)|| < e
where € > 0 is a desired accuracy, which is part of the problem formulation




Key Elements of Algorithmic Design

» Problem class P
> Measure of inexactness and desired accuracy € > 0

» Oracle O (type of information we have access to) <> class of algorithms A

Complexity of a method on a problem is the minimal number of iterations required to
solve the problem with the fixed accuracy € > 0

» Can be 400

» Also called oracle complexity, analytical complexity, or iteration complexity

Complexity of a method on a problem class is the maximum over complexity on a
problem p, over all p € P

» Among all problems, we pick the worst one for the method



Example: Global Optimization

Problem class: min f(x)
xeB

where
> B={xeR" : |x]|oo < R} is a box

» f is continuous and Lipschitz:

) =9 < Lly=Xle, forall xyeB

Parameters of the problem class:

» Dimension n >1

» Radius of the box R >0

» Lipschitz constant L > 0
Accuracy condition:

fix)—f* < ¢

Type of oracle:

» Zeroth-order black-box oracle: x — f{x)



Grid Search Algorithm

1. Choose p > 1 (an integer parameter of the method)

2. Generate pn points,
p—1 2R p-1 2R
X(tryorts) = [——, "R+t , ..., =R+ —,tn]

where 0 < t; < p— 1 for each coordinate 1 <i<n

3. Among all these p” points, find the point x with the smallest function
value. Return X.

» This is a zeroth-order method.
Theorem. Let p > 1 and X be the result of the grid search algorithm. Then,

o\ g 2LR
fx)—f* < =°F
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