

Continuous Optimization: Algorithms and Complexity

ORIE 6365

Lecture 1: Introduction. Complexity of Optimization Problems.

Nikita Doikov

Cornell University
School of Operations Research and Information Engineering (ORIE)

January 21, 2026

Theory Course in Continuous Optimization

The problem:

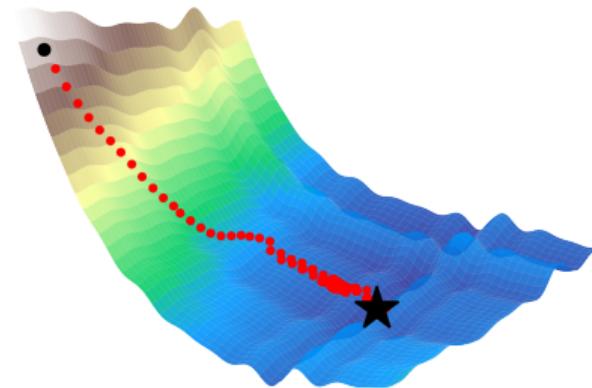
$$\min_{x \in Q} f(x)$$

- ▶ $f: Q \rightarrow \mathbb{R}$ is the **objective function**
- ▶ x is the **decision variable** which belongs to a **feasible set**: $x \in Q \subseteq \mathbb{R}^n$

Our goal: to find a best possible x^*

Modern and classic applications:

- ▶ dimension n is huge ($n \approx 10^{12}$ for a frontier LLM)
- ▶ f or Q are “difficult”



The scope of this course:

- ▶ design and analysis of **optimization algorithms**
- ▶ **complexity theory** — how to estimate their efficiency? which algorithm is better and when?

Sources of Optimization Problems

Machine Learning, AI:

$f(x)$ = loss of the model on training data

x are the weights of the model that we train

- ▶ Linear regression, Logistic regression, Neural networks ($x \in \mathbb{R}^n$)

Graphs:

$f(x)$ = the value of the flow x in a network ($x \in Q$, where Q is the set of flows)

Finance:

$f(x)$ = the expected return for a portfolio selection x

...

- ▶ Notice that $\max_x f(x) = - \min_x [-f(x)]$

Course Information

Instructor: Nikita Doikov — please call me *Nikita*

Course website: doikov.com/teaching/orie6365-s26/ and [Canvas](#)

Disclaimer: this is a graduate-level theory course

Grading:

- ▶ Theory homeworks (around 3-4) $\approx 50\%$
- ▶ Practical assignments (around 2) $\approx 30\%$
- ▶ Final take-home exam $\approx 20\%$

The first homework is already out!

Due on January 31

Today's Outline

Terminology

Core components of algorithmic design

Analysis: grid search algorithm

General Forms of Optimization Problems

$$\min_{x \in Q} f(x) \quad \text{where} \quad Q \subseteq \mathbb{R}^n$$

► Unconstrained optimization: $Q = \mathbb{R}^n$

- Smooth / Non-smooth problems: whether $f: \mathbb{R}^n \rightarrow \mathbb{R}$ is "smooth" (at least differentiable) / non-differentiable

► Constrained optimization: $Q \subset \mathbb{R}^n$ is a constraint set

1. Simple constraints. For example, a ball in some norm $\|\cdot\|$, for $R > 0$:

$$Q = \{x \in \mathbb{R}^n : \|x\| \leq R\}.$$

"Simplicity" means that we can perform basic operations with Q efficiently, e.g.

$$\text{proj}_Q(x) = \arg \min_{y \in Q} \|y - x\|$$

2. Functional constraints. $Q = \{x \in \Omega : g_1(x) \leq 0, \dots, g_m(x) \leq 0\}$, for a simple $\Omega \subseteq \mathbb{R}^n$ where $g_i: \Omega \rightarrow \mathbb{R}$ are some functions.

NB: It is enough to use only " \leq " instead of " \geq " and " $=$ ".

► Convex optimization: Q is a convex set, and $f: Q \rightarrow \mathbb{R}$ is a convex function

Types of Solutions

Optimization problem:

$$\min_{x \in Q} f(x)$$

A point $x \in Q$ is called **feasible point**, and $x \notin Q$ is **infeasible**

A point $x^* \in Q$ is called **global solution** if

$$f(x^*) \leq f(x), \quad \forall x \in Q.$$

- ▶ An **ideal goal**, but can be difficult to find
- ▶ We will denote $f^* = f(x^*)$ — sometimes it is easier to compute

A point $\bar{x} \in Q$ is called **local solution** if there exists a **neighborhood** of \bar{x} (an open set $U \in \mathbb{R}^n$ containing \bar{x}) such that

$$f(\bar{x}) \leq f(x), \quad \forall x \in Q \cap U.$$

- ▶ Usually much easier to find than a global solution

Why Continuous?

Continuous optimization means that the objective function f is **continuous** (or even differentiable) and the variables $x \in Q \subseteq \mathbb{R}^n$ can take **continuous values**.

A question: *Will you keep attending this course?*

1. **Yes, I will.** $x \in \{0, 1\}$ **Very hard** to predict reliably in practice (even for advanced AI systems).
2. **Probably.** $x \in [0, 1]$ **Easier to predict**, e.g.: $x \geq 0.8$.

Continuous decisions are often easier to make than **discrete** ones.

- ▶ It is very fruitful to work with the continuous space of parameters

An Example of Constrained Problem

Let $x \in \mathbb{R}$ and consider 2 functions:

$$g_1(x) = x^2 - 1, \quad g_2(x) = 1 - x^2$$

- ▶ Both are **continuous** nice functions
- ▶ However, the constraint set

$$\begin{aligned} Q &= \{x \in \mathbb{R} : g_1(x) \leq 0, g_2(x) \leq 0\} \\ &= \{x \in \mathbb{R} : x^2 \leq 1, x^2 \geq 1\} \\ &= \{x \in \mathbb{R} : x^2 = 1\} = \{\pm 1\} \end{aligned}$$

is **discrete**!

- ▶ Thus, $\min_{x \in Q} f(x)$ will be **discrete problem**
- ▶ Problems with functional constraints can be hard even for "simple" functions

Example: Linear Programming

Linear Programming: both objective and constraints are **linear / affine** functions

- ▶ $f(x) = \langle c, x \rangle$ for some $c \in \mathbb{R}^n$
- ▶ For all $1 \leq i \leq m$: $g_i(x) = \langle a_i, x \rangle - b_i$ where $a_i \in \mathbb{R}^n$, $b_i \in \mathbb{R}$
- ▶ We obtain the problem of minimizing a linear function over a **polyhedron**:

$$\min_{x \in \mathbb{R}^n} \left\{ \langle c, x \rangle : \langle a_1, x \rangle \leq b_1, \dots, \langle a_m, x \rangle \leq b_m \right\}$$

- ▶ **Matrix notation:** form $A \in \mathbb{R}^{n \times m}$ with $a_1, \dots, a_m \in \mathbb{R}^n$ to be its columns:

$$A = \begin{bmatrix} a_1 & a_2 & \cdots & a_m \end{bmatrix} \in \mathbb{R}^{n \times m} \quad \text{and} \quad b = [b_1 \ b_2 \ \cdots \ b_m]^\top \in \mathbb{R}^m.$$

Then $Q = \{x \in \mathbb{R}^n : A^\top x \leq b\}$.

- ▶ **An instance of the problem** is given by **input data**: $P = \{A, b, c\}$.
- ▶ Linear programming is already **non-trivial** to solve.

This course: two **polynomial-time** algorithms for linear programming (*ellipsoid* method and *interior-point* method)

Feasibility Problem

Let $Q \subseteq \mathbb{R}^n$ be given.

Feasibility problem: to find $x^* \in Q$. (an optimization problem with $f \equiv 0$)

Example

$$\text{Let } Q = \{x \in \mathbb{R}^n : Ax = b\} = \{x \in \mathbb{R}^n : Ax - b \leq 0, b - Ax \leq 0\}$$

Then the feasibility problem is to solve the linear system: $Ax^* = b$. □

Consider an **optimization problem**: $\min_{x \in Q} f(x)$ with a function $f: Q \rightarrow \mathbb{R}$

- ▶ Introduce an **extra variable** $t \in \mathbb{R}$ and **extra constraint** $f(x) \leq t$
- ▶ Then, $\min_{x \in Q} f(x)$ is **equivalent** to the problem with linear objective:

$$\min_{(x,t) \in Q'} t$$

$$\text{where } Q' = \{(x, t) \in \mathbb{R}^{n+1} : x \in Q, f(x) \leq t\}$$

- ▶ Running **binary search** over t : **an optimization problem** \Rightarrow **feasibility problem**
- ▶ Feasibility problems are as hard as optimization ones

The Most Difficult Problem in the World

Let $x^* \in \mathbb{R}^n$ be an arbitrary point.

Set

$$f(x) = \begin{cases} 0, & x = x^* \\ 1, & \text{everywhere else} \end{cases}$$

$\min_x f(x)$ means to find x^* (which is arbitrary!)

- ▶ Thus, we can encode any problem in the world as optimization problem
- ▶ **NB:** we can even make f continuous

Optimization problems are generally unsolvable

- ▶ We will investigate problem classes that we can solve by efficient algorithms
- ▶ For each problem class, we will associate its corresponding complexity

Problem Class

Imagine we have **one fixed** function: $f_0 : \mathbb{R}^n \rightarrow \mathbb{R}$ that has global minimum x^* .

The best algorithm for solving this problem?

Return x^*

- ▶ **Perfect** on functions with minimum x^*
- ▶ **Wrong** on all other functions (silly method!)

Instead of fixing one function, we always fix a **problem class \mathcal{P}** , a family of problems

Examples:

- ▶ $\mathcal{P} = \{f_0\}$ consisting of one function — **too small**
- ▶ $\mathcal{P} = \{f \text{ s.t. } f \in \mathcal{C}(\mathbb{R}^n)\}$ consisting of all continuous functions — **too large**
- ▶ $\mathcal{P} = \{f \text{ s.t. } f \text{ is convex and } \nabla f \text{ is Lipschitz}\}$ — **already much better**
- ▶ $\mathcal{P} = \{(f, Q) \text{ s.t. } f \text{ is linear and } Q \text{ is a polyhedron}\}$ LP — **polynomially solvable**
- ▶ ...

Performance of an algorithm is measured over **all problems** from \mathcal{P}

Oracles

An **oracle** is how the algorithm gets access to the function

Most often, we will consider the **black-box local oracles**:

at any point $x \in Q$, an algorithm can "learn" a local information about objective

$$x \mapsto \mathcal{O}(x)$$

- ▶ **Zeroth-order oracle:** $\mathcal{O}(x) = \{f(x)\}$, only function values
- ▶ **First-order oracle:** $\mathcal{O}(x) = \{f(x), \nabla f(x)\}$, function and gradient
- ▶ **Second-order oracle:** $\mathcal{O}(x) = \{f(x), \nabla f(x), \nabla^2 f(x)\}$, function, gradient, and Hessian
- ▶ ...

What is Optimization Algorithm?

A general scheme of an optimization method:

Initialization: $x_0 \in Q$

For $k \geq 0$ **iterate:**

$I_k = \{ \mathcal{O}(x_0), \dots, \mathcal{O}(x_k) \}$ // collect information

If $S_k(I_k)$ **then** // stopping condition

return $R_k(I_k)$ // return the result

$x_{k+1} = A_k(I_k)$ // compute next point

To define the method we need to specify three sequences of mappings

- ▶ Main iterates: (A_0, A_1, \dots)
- ▶ Stopping conditions: (S_0, S_1, \dots)
- ▶ How to form the result: (R_0, R_1, \dots)

Stopping Condition

In practice, we always run methods for a **finite number of iterations**

- ▶ We cannot hope to get **exact solution** x^*
- ▶ Therefore, we always work with **approximate solutions** $x_k \approx x^*$, where x_k is the result of the method

Measures of Inexactness (unconstrained minimization $f^* = \min_{x \in \mathbb{R}^n} f(x)$):

- ▶ Functional residual: $f(x_k) - f^* \leq \varepsilon$
- ▶ Pointwise distance: $\|x_k - x^*\| \leq \varepsilon$
- ▶ Gradient norm: $\|\nabla f(x_k)\| \leq \varepsilon$

where $\varepsilon > 0$ is a **desired accuracy**, which is part of the problem formulation

Key Elements of Algorithmic Design

- ▶ Problem class \mathcal{P}
- ▶ Measure of inexactness and desired accuracy $\varepsilon > 0$
- ▶ Oracle \mathcal{O} (type of information we have access to) \leftrightarrow class of algorithms \mathcal{A}

Complexity of a method on a problem is the **minimal number of iterations** required to solve the problem with the fixed accuracy $\varepsilon > 0$

- ▶ Can be $+\infty$
- ▶ Also called *oracle complexity*, *analytical complexity*, or *iteration complexity*

Complexity of a method on a problem class is the **maximum** over complexity on a problem p , over all $p \in \mathcal{P}$

- ▶ Among all problems, we pick **the worst one for the method**

Example: Global Optimization

Problem class: $\min_{x \in B} f(x)$

where

- ▶ $B = \{x \in \mathbb{R}^n : \|x\|_\infty \leq R\}$ is a box
- ▶ f is continuous and **Lipschitz**:

$$|f(y) - f(x)| \leq L\|y - x\|_\infty, \quad \text{for all } x, y \in B$$

Parameters of the problem class:

- ▶ Dimension $n \geq 1$
- ▶ Radius of the box $R > 0$
- ▶ Lipschitz constant $L > 0$

Accuracy condition:

$$f(\bar{x}) - f^* \leq \varepsilon$$

Type of oracle:

- ▶ **Zeroth-order black-box oracle:** $x \mapsto f(x)$

Grid Search Algorithm

1. Choose $p \geq 1$ (an integer parameter of the method)
2. Generate p^n points,

$$x_{(t_1, \dots, t_n)} = \left[-\frac{p-1}{p} \cdot R + \frac{2R}{p} t_1, \dots, -\frac{p-1}{p} \cdot R + \frac{2R}{p} t_n \right]$$

where $0 \leq t_i \leq p - 1$ for each coordinate $1 \leq i \leq n$

3. Among all these p^n points, find the point \bar{x} with the **smallest function value**. **Return** \bar{x} .

► This is a **zeroth-order method**.

Theorem. Let $p \geq 1$ and \bar{x} be the result of the grid search algorithm. Then,

$$f(\bar{x}) - f^* \leq \frac{2LR}{p}$$