
Continuous Optimization: Algorithms and Complexity
ORIE 6365

Lecture 1: Introduction. Complexity of Optimization
Problems.

Nikita Doikov

Cornell University
School of Operations Research and Information Engineering (ORIE)

January 21, 2026

Theory Course in Continuous Optimization
The problem: min

x∈Q
f(x)

▶ f : Q → R is the objective function
▶ x is the decision variable which belongs to a feasible set: x ∈ Q ⊆ Rn

Our goal: to find a best possible x⋆

Modern and classic applications:
▶ dimension n is huge (n ≈ 1012 for a frontier LLM)
▶ f or Q are “difficult”

The scope of this course:
▶ design and analysis of optimization algorithms
▶ complexity theory — how to estimate their efficiency? which algorithm is better

and when?

Sources of Optimization Problems

Machine Learning, AI:
f(x) = loss of the model on training data
x are the weights of the model that we train
▶ Linear regression, Logistic regression, Neural networks (x ∈ Rn)

Graphs:
f(x) = the value of the flow x in a network (x ∈ Q, where Q is the set of flows)

Finance:
f(x) = the expected return for a portfolio selection x

...

▶ Notice that max
x

f(x) = −min
x
[−f(x)]

Course Information

Instructor: Nikita Doikov — please call me Nikita

Course website: doikov.com/teaching/orie6365-s26/ and Canvas

Disclaimer: this is a graduate-level theory course

Grading:
▶ Theory homeworks (around 3-4) ≈ 50%
▶ Practical assignments (around 2) ≈ 30%
▶ Final take-home exam ≈ 20%

The first homework is already out! Due on January 31

https://doikov.com/teaching/orie6365-s26/

Today’s Outline

Terminology

Core components of algorithmic design

Analysis: grid search algorithm

General Forms of Optimization Problems

min
x∈Q

f(x) where Q ⊆ Rn

▶ Unconstrained optimization: Q = Rn

▶ Smooth / Non-smooth problems: whether f : Rn → R is ”smooth” (at least
differentiable) / non-differentiable

▶ Constrained optimization: Q ⊂ Rn is a constraint set
1. Simple constraints. For example, a ball in some norm ‖ · ‖, for R > 0:

Q = {x ∈ Rn : ‖x‖ ≤ R}.
”Simplicity” means that we can perform basic operations with Q efficiently, e.g.

projQ(x) = arg miny∈Q ‖y − x‖

2. Functional constraints.Q =
{

x ∈ Ω : g1(x) ≤ 0, . . . , gm(x) ≤ 0
}

, for a simple Ω ⊆ Rn

where gi : Ω → R are some functions.
NB: It is enough to use only ”≤” instead of ”≥” and ”=”.

▶ Convex optimization: Q is a convex set, and f : Q → R is a convex function

Types of Solutions
Optimization problem: min

x∈Q
f(x)

A point x ∈ Q is called feasible point, and x 6∈ Q is infeasible

A point x∗ ∈ Q is called global solution if

f(x∗) ≤ f(x), ∀x ∈ Q.

▶ An ideal goal, but can be difficult to find
▶ We will denote f ∗ = f(x∗) — sometimes it is easier to compute

A point x̄ ∈ Q is called local solution if there exists a neighborhood of x̄ (an open set
U ∈ Rn containing x̄) such that

f(x̄) ≤ f(x), ∀x ∈ Q ∩ U.

▶ Usually much easier to find than a global solution

Why Continuous?
Continuous optimization means that the objective function f is continuous (or even
differentiable) and the variables x ∈ Q ⊆ Rn can take continuous values.

A question: Will you keep attending this course?

1. Yes, I will. x ∈ {0, 1} Very hard to predict reliably in practice (even for advanced
AI systems).

2. Probably. x ∈ [0, 1] Easier to predict, e.g.: x ≥ 0.8.

Continuous decisions are often easier to make than discrete ones.

▶ It is very fruitful to work with the continuous space of parameters

An Example of Constrained Problem
Let x ∈ R and consider 2 functions:

g1(x) = x2 − 1, g2(x) = 1 − x2

▶ Both are continuous nice functions

▶ However, the constraint set
Q =

{
x ∈ R : g1(x) ≤ 0, g2(x) ≤ 0

}
=

{
x ∈ R : x2 ≤ 1, x2 ≥ 1

}
=

{
x ∈ R : x2 = 1} =

{
±1

}
is discrete!

▶ Thus, min
x∈Q

f(x) will be discrete problem
▶ Problems with functional constraints can be hard even for ”simple” functions

Example: Linear Programming
Linear Programming: both objective and constrains are linear / affine functions
▶ f(x) = 〈c, x〉 for some c ∈ Rn

▶ For all 1 ≤ i ≤ m: gi(x) = 〈ai, x〉 − bi where ai ∈ Rn, bi ∈ R
▶ We obtain the problem of minimizing a linear function over a polyhedron:

min
x∈Rn

{
〈c, x〉 : 〈a1, x〉 ≤ b1, . . . , 〈am, x〉 ≤ bm

}
▶ Matrix notation: form A ∈ Rn×m with a1, . . . , am ∈ Rn to be its columns:

A =
[
a1 a2 · · · am

]
∈ Rn×m and b = [b1 b2 · · · bm]⊤ ∈ Rm.

Then Q =
{

x ∈ Rn : A⊤x ≤ b
}

.
▶ An instance of the problem is given by input data: P = {A, b, c}.
▶ Linear programming is already non-trivial to solve.

This course: two polynomial-time algorithms for linear programming (ellipsoid
method and interior-point method)

Feasibility Problem
Let Q ⊆ Rn be given.

Feasibility problem: to find x∗ ∈ Q. (an optimization problem with f ≡ 0)
Example
Let Q =

{
x ∈ Rn : Ax = b

}
=

{
x ∈ Rn : Ax − b ≤ 0, b − Ax ≤ 0}

Then the feasibility problem is to solve the linear system: Ax∗ = b.

Consider an optimization problem: min
x∈Q

f(x) with a function f : Q → R
▶ Introduce an extra variable t ∈ R and extra constraint f(x) ≤ t
▶ Then, minx∈Q f(x) is equivalent to the problem with linear objective:

min
(x,t)∈Q′

t

where Q′ =
{
(x, t) ∈ Rn+1 : x ∈ Q, f(x) ≤ t

}
▶ Running binary search over t: an optimization problem ⇒ feasibility problem
▶ Feasibility problems are as hard as optimization ones

The Most Difficult Problem in the World

Let x∗ ∈ Rn be an arbitrary point.
Set

f(x) =

{
0, x = x∗

1, everywhere else

min
x

f(x) means to find x∗ (which is arbitrary!)
▶ Thus, we can encode any problem in the world as optimization problem
▶ NB: we can even make f continuous

Optimization problems are generally unsolvable

▶ We will investigate problem classes that we can solve by efficient algorithms
▶ For each problem class, we will associate its corresponding complexity

Problem Class
Imagine we have one fixed function: f0 : Rn → R that has global minimum x∗.

The best algorithm for solving this problem? Return x∗

▶ Perfect on functions with minimum x∗
▶ Wrong on all other functions (silly method!)

Instead of fixing one function, we always fix a problem class P, a family of problems
Examples:
▶ P = {f0 } consisting of one function — too small
▶ P = {f s.t. f ∈ C(Rn)} consisting of all continuous functions — too large
▶ P = {f s.t. f is convex and ∇f is Lipschitz} — already much better
▶ P = {(f,Q) s.t. f is linear and Q is a polyhedron} LP — polynomially solvable
▶ . . .

Performance of an algorithm is measured over all problems from P

Oracles

An oracle is how the algorithm gets access to the function

Most often, we will consider the black-box local oracles:
at any point x ∈ Q, an algorithm can ”learn” a local information about objective

x 7→ O(x)

▶ Zeroth-order oracle: O(x) = {f(x)}, only function values

▶ First-order oracle: O(x) = {f(x),∇f(x)}, function and gradient

▶ Second-order oracle: O(x) = {f(x),∇f(x),∇2f(x)}, function, gradient, and
Hessian

▶ …

What is Optimization Algorithm?

A general scheme of an optimization method:

Initialization: x0 ∈ Q
For k ≥ 0 iterate:

Ik = { O(x0), . . . ,O(xk) } // collect information
If Sk(Ik) then // stopping condition

return Rk(Ik) // return the result
xk+1 = Ak(Ik) // compute next point

To define the method we need to specify three sequences of mappings
▶ Main iterates: (A0,A1, . . .)
▶ Stopping conditions: (S0, S1, . . .)
▶ How to form the result: (R0,R1, . . .)

Stopping Condition

In practice, we always run methods for a finite number of iterations

▶ We cannot hope to get exact solution x∗

▶ Therefore, we always work with approximate solutions xk ≈ x∗, where xk is the
result of the method

Measures of Inexactness (unconstrained minimization f ∗ = min
x∈Rn

f(x)):
▶ Functional residual: f(xk)− f ∗ ≤ ε

▶ Pointwise distance: ‖xk − x ∗‖ ≤ ε

▶ Gradient norm: ‖∇f(xk)‖ ≤ ε

where ε > 0 is a desired accuracy, which is part of the problem formulation

Key Elements of Algorithmic Design

▶ Problem class P

▶ Measure of inexactness and desired accuracy ε > 0

▶ Oracle O (type of information we have access to) ↔ class of algorithms A

Complexity of a method on a problem is the minimal number of iterations required to
solve the problem with the fixed accuracy ε > 0

▶ Can be +∞
▶ Also called oracle complexity, analytical complexity, or iteration complexity

Complexity of a method on a problem class is the maximum over complexity on a
problem p, over all p ∈ P

▶ Among all problems, we pick the worst one for the method

Example: Global Optimization
Problem class: min

x∈B
f(x)

where
▶ B = {x ∈ Rn : ‖x‖∞ ≤ R} is a box
▶ f is continuous and Lipschitz:

|f(y)− f(x)| ≤ L‖y − x‖∞, for all x, y ∈ B

Parameters of the problem class:
▶ Dimension n ≥ 1
▶ Radius of the box R > 0
▶ Lipschitz constant L > 0

Accuracy condition:
f(x̄)− f ∗ ≤ ε

Type of oracle:
▶ Zeroth-order black-box oracle: x 7→ f(x)

Grid Search Algorithm

1. Choose p ≥ 1 (an integer parameter of the method)
2. Generate pn points,

x(t1,...,tn) =
[
−p−1

p · R + 2R
p t1 , . . . , −p−1

p · R + 2R
p tn

]
where 0 ≤ ti ≤ p − 1 for each coordinate 1 ≤ i ≤ n

3. Among all these pn points, find the point x̄ with the smallest function
value. Return x̄.

▶ This is a zeroth-order method.
Theorem. Let p ≥ 1 and x̄ be the result of the grid search algorithm. Then,

f(x̄)− f ∗ ≤ 2LR
p

	Terminology
	Core components of algorithmic design
	Analysis: grid search algorithm

