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Abstract

In the recent years, we can see that the interest for new optimization meth-
ods keeps growing. The modern problems are usually ill-conditioned and
high-dimensional. As a consequence, it is hard to solve them by using only
the classical techniques. At the same time, the first-order or the gradient
methods very often suffer from slow convergence, reaching their theoretical
limitations.

One of the natural ideas for improving the performance of the numerical
algorithms is to use higher derivatives of the objective. The classical second-
order optimization scheme is called Newton’s method. It has very fast local
quadratic convergence, provided that the starting point is sufficiently close
to the optimum. However, contrary to first-order algorithms, the classical
Newton’s method with unit step size does not possess any global convergence
guarantees in the general case.

The main goal of this thesis is to develop and analyse second-order and
high-order optimization methods for solving composite convex optimiza-
tion problems, together with the different problem classes, for which we
can establish the global iteration complexity bounds. We are interested in
studying implementable algorithms with explicitly stated convergence rates,
aiming to have both theoretical and practical justification of the methods.
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Chapter 1

Introduction

The first study of optimization principles and algorithms was undertaken
long before the invention of the computer. Today, we can highlight the work
of Cauchy in 1847 on the gradient method [91]. It appears that steepest
descent and Armijo-type line search were already known at that time, while
the rigorous proofs of convergence were waiting for one hundred years to be
discovered.

From the middle of the twentieth century, Optimization was quickly rec-
ognized as one of the most important parts of Computational Mathemat-
ics and Computer Science. Numerical optimization methods formed the
foundations for the information revolution, that keeps changing our lives
nowadays. The first-order or the gradient methods were established as a
fundamental tool for solving nonlinear optimization problems. Extensive
research on their convergence started from the 1950s. Let us refer to the
paper of Polyak in 1963 on the gradient methods [129], where the proofs of
convergence were presented in a modern form, and the works of Shor [143],
who discovered the subgradient method in 1962.

Besides, it became clear very soon that general optimization problems
are mainly unsolvable. Indeed, the class of all optimization problems is so
large that an intention to develop a universal method seems too ambitious.
Convex Analysis, which had taken its modern shape in 1970 due to the book
of Rockafellar [132], gave rise to the field of Convex Optimization. Presum-
ably, convex optimization problems are among the only efficiently solvable
continuous problems in Optimization Theory. These ideas were reflected
in the classic monograph of Nemirovski and Yudin [106], written in 1979.
After this work, it became possible to speak of the complexity of solving
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Chapter 1. Introduction

optimization problems from a particular problem class. There appeared
to exist unavoidable lower complexity bounds for different problem classes,
and the optimal methods that achieve the corresponding bounds. The Fast
Gradient Method, which is optimal for Smooth Convex Optimization, was
discovered by Nesterov in 1983 [107].

Over the past decades, progress in first-order optimization theory has
been immense. But despite many great achievements, it remains a major
bottleneck for the gradient methods that their rate of convergence is slow
due to the fundamental theoretical limitations, that are represented by the
lower complexity bounds.

Newton’s method is a classical numerical algorithm, which has a reputa-
tion for being powerful. The initial versions of the method were considered
by Newton in 1669 for solving polynomial equations, and in general form
by Raphson in 1690 [131]. Its convergence was studied in the works of Fine
and Bennett in 1916 [51, 11], and in the paper of Kantorovich in 1948 [79].
From the optimization perspective, Newton’s method is a second-order al-
gorithm that is based on the quadratic approximation of the target function.
Thus the rate is locally quadratic, which is much faster than the rate of the
gradient methods. However, when the starting point is far away from the
optimum, the convergence of Newton’s method can be arbitrarily slow, or
even absent.

In this thesis, our goal is to develop efficient second-order and high-order
optimization methods that have global iteration complexity guarantees. We
study several modifications of Newton’s method and analyse their conver-
gence rates. Some of the approaches were known from previous works but
received extended analysis and important new features. The other algo-
rithms are completely new. For all our methods, we prove the global rates
and compare them with the rates of the first-order methods. Numerical
experiments are included.

First-Order Optimization. Let us mention some of the most represen-
tative directions and works in the area.

In the beginning of this century, it was revealed that we can signifi-
cantly accelerate first-order methods by moving out of the black-box opti-
mization concept. Very often, we know additional information about the
objective, and it might help an algorithm to be more effective by using that
knowledge properly. In this vein, the framework of composite optimization,
which is able to treat simple nondifferentiable components, was developed
by Nesterov [114], and by Beck and Teboulle [9] with applications to image
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processing.
Another major source of information is the primal-dual structure of

the problem. The smoothing technique (Nesterov, 2005 [108], 2007 [110];
d’Aspremont, El Ghaoui, Jordan, Lanckriet, 2007 [32]; d’Aspremont, 2008
[31]; Devolder, Glineur, Nesterov, 2012 [35]; Kelner, Lee, Orecchia, Sidford,
2014 [81]) is a striking example of using such structure of a given nondif-
ferentiable function in the methods that were initially developed for differ-
entiable objectives. This technique has been widely adopted in many ap-
plications, including the principal component analysis (PCA), semidefinite
programming (SDP), optimal control, and discrete optimization problems.
One more example of utilizing the min-max structure of the problem is the
Mirror Prox algorithm, that was proposed by Nemirovski in 2004 [104]. A
particular instance of this algorithm known as the extragradient method
was developed by Korpelevich in 1976 [84].

There was growing interest in the interplay between Optimization and
Machine Learning in the 2010s (see the volume [146]). Stochastic meth-
ods with their complexity bounds were studied in the works of Nemirovski,
Juditsky, Lan, and Shapiro [105, 87]. The first-order methods with inex-
act oracle information, and the universal methods that can automatically
adapt to the smoothness properties of the objective were developed by De-
volder, Glineur, and Nesterov in [36, 115], and for the stochastic setting by
Dvurechensky and Gasnikov in [47]. Adaptive subgradient methods for on-
line learning and stochastic optimization were introduced by Duchi, Hazan,
and Singer in 2011 [46].

A large group of problems in Machine Learning and Statistics can be
modelled as a finite-sum minimization problem, where the target objective
is represented as a (huge) sum of losses evaluated at different objects from a
given dataset. A notable achievement was the development of the variance
reduction technique by Schmidt, Le Roux, and Bach in 2012 [141] for the
gradient methods solving such problems.

The modern huge-scale problems needed new ideas and new methods,
while some of the other developments were revisitings of the old techniques.
Thus the coordinate descent methods became very popular for solving the
problems with thousands and millions of variables, after the first complex-
ity guarantees were established by Nesterov in 2012 [113]. The accelerated
coordinate methods with nonuniform random samplings were proposed by
Lee and Sidford, 2013 [90], and with improved sampling distributions in
2016 by Allen-Zhu, Qu, Richtárik, and Yuan [3], and by Nesterov and Stich
[125]. The coordinate descent method with volume sampling, that has prov-
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Chapter 1. Introduction

ably better performance when increasing the batch size, was developed by
Rodomanov and Kropotov in 2020 [135].

The conditional gradient methods also received substantial attention dur-
ing the past decade, though the first algorithm of this type was proposed
back in 1956 by Frank and Wolfe [52]. It appeared that these methods are
very efficient for solving high-dimensional problems over the convex sets
with difficult structure (see the works of Jaggi, 2013 [73], Lacoste-Julien,
Jaggi, Schmidt, and Pletscher [86], Lan, 2013 [88], Harchaoui, Juditsky, and
Nemirovski, 2015 [69]).

One of the recent promising research directions is computer aided analy-
sis for the performance of first-order methods (Drori and Teboulle, 2014 [45];
Kim and Fessler, 2016 [82]; Taylor, Hendrickx, and Glineur, 2017 [149, 148]).
With the help of computers, there were developed the accelerated gradient
methods that match the lower complexity bounds with the best numerical
factors.

Second-Order Optimization. From the beginning of using Newton’s
method in computational practice, there have been many techniques devel-
oped to improve its convergence properties.

A popular approach, that is often called the damped Newton method, is
to perform a line search for the Newton direction. This idea was proposed
in 1948 by Kantorovich. A more modern reference is the book of Ortega and
Rheinboldt [128], originally published in 1970. For some classes of problems,
it is possible to establish the global convergence for the damped Newton
iterations. However, there are two serious issues with this approach. First,
the method might not work when the Hessian is a degenerate matrix (which
happens even to the convex problems). Second, the complexity guarantees
of the damped Newton method are usually much worse than that of the
basic gradient methods. Therefore, from the theoretical perspective, there
is no point in using the second-order information in this case, until entering
the region of quadratic convergence.

To deal with the degeneracy of the Hessian, one can use the Levenberg-
Marquardt algorithm, first published in 1944 [92] and then rediscovered in
1963 [97]. They suggested to regularize the Hessian with the identity matrix
multiplied by some positive coefficient. It can be viewed as a strategy
for combining the Newton algorithm with the gradient method. So the
regularization parameter should mix the best of the performances of these
two methods. At the same time, the Levenberg-Marquardt algorithm may
suffer from the slow worst-case convergence of the first-order schemes, while
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the choice of the regularization parameter is not easy.
The trust-region approach is a different and very popular technique of

globalizing the Newton iterations. The idea is to restrict the quadratic
model of the function onto a neighbourhood of the current point. The size
of this neighbourhood is a parameter that we need to choose. It should
balance the error of the model and the length of the method step. Trust-
region methods originated in the work of Goldfeld, Quandt, and Trotter
in 1966 [56]; afterwards, they were extensively developed by Conn, Gould,
and Toint (see their book [30], published in 2000). An example of slow
behaviour of Newton’s method and its trust-region modifications was con-
structed by Cartis, Gould, and Toint in 2013 [25]. It was demonstrated that
for unconstrained minimization of a smooth function with globally Lipschitz
continuous Hessian, the number of iterations of the Newton algorithm might
be as many as of the steepest descent.

A big step in a second-order optimization theory was made after the
paper [124] by Nesterov and Polyak in 2006, where cubic regularization of
Newton’s method with its global complexity guarantees was justified. The
main idea of [124] is to use a global upper approximation model of the objec-
tive, which is the second-order Taylor’s polynomial augmented by a cubic
term. For different problem classes, it was shown that the Cubic New-
ton algorithm has global rates which are better than those of the gradient
methods.

Moreover, one can find elements of all three approaches (a line search,
the Levenberg-Marquardt, and the trust-region techniques) in the cubic
regularization scheme, but all these features are just consequences of the
core idea, which is to employ a global upper approximation. Probably
the first appearance of the cubic regularization of Newton’s method in the
scientific literature was the paper [64] by Griewank in 1981.

The following results provide a good perspective for the development
of the cubic regularization approach. Accelerated second-order schemes for
convex minimization were discovered in (Nesterov, 2008 [111]). Adaptive
cubic regularization methods were developed in (Cartis, Gould, and Toint,
2011 [21, 22]). The latter algorithms showed encouraging performance, em-
ploying both an adaptive estimation of the regularization parameter and effi-
cient approximations of the exact cubic step. Extending the idea of adaptive
search, universal schemes that can automatically adjust to a second-order
smoothness of a particular objective function were proposed in (Grapiglia
and Nesterov, 2017 [60, 61]). The methods based on probabilistic mod-
els with cubic regularization and line search were developed in (Cartis and
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Chapter 1. Introduction

Scheinberg, 2018 [28]) for solving large-scale unconstrained minimization
problems.

In the same vein, the Gauss-Newton algorithms with global complexity
guarantees for solving a system of nonlinear equations were proposed in
(Nesterov, 2007 [109]).

The lower complexity bounds for the second- and high-order methods
were obtained by (Cartis, Gould, and Toint, 2010 [20]; Arjevani, Shamir,
and Shiff, 2019 [4]; Agarwal and Hazan, 2018 [1]). The accelerated proximal
method that was proposed in (Monteiro and Svaiter, 2013 [101]) turned
out to be nearly optimal for second-order convex optimization, matching
the corresponding lower bound up to logarithmic terms. Such additional
payment is required for some heavy auxiliary line search at each iteration.

There are two open theoretical questions related to the cubic regulariza-
tion technique, which we address in our thesis.

First, it is still not fully understood, what the global complexity bounds
of the regularized Newton schemes for the problems with strongly convex
and uniformly convex objectives are. For the first-order algorithms, strongly
convex functions with Lipschitz continuous gradient serve as an example
of nondegenerate problem class, that is the most favourable to the meth-
ods. Therefore, a comparison between the first-order and the second-order
schemes on these problems is of a high importance.

Second, a nice property of the classical Newton’s method is affine-
invariance. It makes the method independent of the coordinate system,
which can be chosen in the wrong way in applications. On the contrary, in
the Cubic Newton method we are obliged to fix the norm for the regular-
izer. As a consequence, the method is no longer affine-invariant and quite
sensitive to the choice of the coordinate system.

Affine-invariant characterization of Newton’s method is mainly related
to the framework of self-concordant functions, introduced for the study of
the interior-point methods by Nesterov and Nemirovski in 1994 [123]. From
the global perspective, this class provides us with an upper second-order ap-
proximation of the objective, which naturally leads to the damped Newton
iterations. Several new results are related to the analysis of the damped
Newton method for generalized self-concordant functions (Bach, 2010 [5];
Sun and Tran-Dinh, 2019 [147]), and the notion of Hessian stability (Karim-
ireddy, Stich, and Jaggi, 2018 [80]). However, for more refined problem
classes, we can often obtain much better complexity estimates by using the
cubic regularization technique (see Dvurechensky and Nesterov, 2018 [49]).

In this thesis, we propose a new family of second-order algorithms called
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Contracting Newton methods that have both the affine-invariance property
and the fast global rate of the Cubic Newton method.

Tensor Methods. It seems to be a natural idea to increase the efficiency
of the methods by employing high-order oracles. The study of high-order
numerical methods for solving nonlinear equations is dated back to the work
of Chebyshev in 1838, where the scalar methods of order three and four
were proposed [29]. The methods of arbitrary order for solving nonlinear
equations were studied by Evtushenko and Tretyakov in 2014 [50].

The main obstacle to using this approach in Optimization consists in a
prohibiting complexity of the corresponding Taylor’s approximations formed
by the high-order multidimensional polynomials, which are difficult to store,
handle, and minimize. If we go just one step above the commonly used
quadratic approximation, we get a multidimensional polynomial of degree
three which is never convex. Consequently, its usefulness for optimization
methods was questionable.

However, recently in the work of Nesterov, 2019 [118], it was shown
that Taylor’s polynomials of convex functions have a very interesting struc-
ture. It appeared that their augmentation by a power of Euclidean norm
with a reasonably big coefficients gives us a global upper convex model of
the objective function, which keeps all advantages of the local high-order
approximation.

Hence, it became possible to speak about efficient implementation of the
tensor methods, while their rate of convergence in terms of the iterations is
dramatically fast. The global complexity bounds of the basic and acceler-
ated tensor methods were studied by (Baes, 2009 [6]; Nesterov, 2019 [118];
Gasnikov et al., 2019 [54]). Universal tensor methods, which can automat-
ically adapt to the Hölder parameters of the objective, were developed by
Grapiglia and Nesterov in 2019 [63]. Optimal combinations of the tensor
methods for minimization problems with a sum of functions were studied by
Kamzolov, Gasnikov, and Dvurechensky in 2020 [77]. Adaptive high-order
methods for nonconvex optimization, together with sharp worst-case com-
plexity bounds were investigated by Cartis, Gould, and Toint in 2020 [27].

Application of high-order methods for optimization of a smooth approx-
imation of nonsmooth functions was considered by Bullins, 2020 [16].

In this thesis, our focus on the tensor methods is twofold. Firstly, it
is of theoretical interest and curiosity to study the methods in its general
form. We believe that understanding the core principles behind the methods
of different order may lead us to new developments in the second-order
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Chapter 1. Introduction

and even in the first-order optimization algorithms. Secondly and more
importantly, recently (Nesterov, 2020 [122]) we received a confirmation that
the third-order schemes can be efficiently implemented by employing only
the second-order information. Therefore, it is not possible to avoid the
tensor methods, when speaking on the second-order optimization.

Structure of the Thesis. The rest of this chapter is organized as fol-
lows. Section 1.1 contains an overview of our contributions. Then we intro-
duce the latest research direction on high-order methods in Smooth Convex
Optimization. We list some known algorithms of different order and the
corresponding convergence theory. During description of the methods, we
highlight issues with them which motivate our developments presented in
the follow-up parts. Preliminaries and our notation are in Section 1.3.1.
In Section 1.3.2, we review the Gradient Method. Sections 1.4 and 1.5 are
devoted to second- and high-order methods, respectively. In Section 1.6 we
discuss arithmetical complexity for the oracles of different order.

The main results of the thesis are presented within the following chap-
ters.

Chapter 2 is devoted to uniformly convex functions. In Section 2.1
we study the global performance of a regularized Newton method for the
uniformly convex problems, and in Section 2.2, the local convergence of
high-order Tensor Methods.

Chapter 3 presents our results related to a contraction of the smooth
part of the objective. In Section 3.1, we develop new affine-invariant high-
order algorithms for solving the composite convex minimization problems
with bounded domain. In Section 3.2, we study the performance of the
contracting second-order schemes. We propose new accelerated methods
based on the contraction technique in Section 3.3.

Chapter 4 is devoted to inexact and stochastic versions of the methods.
In Section 4.1, we study inexact high-order Tensor Methods. In Section 4.2,
we investigate inexact contracting second-order method, whose steps are
computed using a first-order gradient-based algorithm. We develop stochas-
tic variants of our contracting second-order schemes in Section 4.3.

Chapter 5 contains final discussion of our results and highlights some
possible directions for the future research.
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1.1. Overview of the Contributions

1.1 Overview of the Contributions
Our thesis is based on new results published in six papers in the leading peer-
reviewed journals of Mathematical Optimization and Machine Learning.
These contributions can be summarized as follows.

Global performance of Cubic Newton for uniformly convex prob-
lems. We introduce the notion of second-order condition number for uni-
formly convex functions with Hölder continuous Hessian of degree ν ∈ [0, 1],
and the corresponding degree of uniform convexity is q = 2 + ν. We show
that a regularized Newton scheme achieves the global linear rate of conver-
gence for these problem classes, and the condition number plays the role
of the main complexity factor. Then we establish this rate for the adaptive
Cubic Newton Method which does not depend on any parameters of the
problem class (automatically achieving the best complexity estimate). As
a by-product of our developments, we justify an intuitively plausible result
that the global iteration complexity of the Cubic Newton is always better
than that of the Gradient Method on the class of strongly convex functions
with uniformly bounded second derivative.

We present these results in Section 2.1 based on the paper:

• Nikita Doikov and Yurii Nesterov. Minimizing uniformly convex func-
tions by cubic regularization of Newton method, Journal of Optimiza-
tion Theory and Applications, 2021 [42].

Local convergence of Tensor Methods. We study local convergence
of high-order Tensor Methods. We justify local superlinear convergence for
the methods of order p ≥ 2, in the case when the composite objective is
uniformly convex of arbitrary degree q from the interval 2 ≤ q < p + 1.
For strongly convex functions (q = 2), this gives the local rate of order p.
This convergence is established both in the function value and in the norm
of minimal subgradient. Then we discuss the global complexity bounds for
the Tensor Method in convex and uniformly convex cases. Lastly, we show
how local convergence of the methods can be globalized by using inexact
Proximal-Point iterations.

These results are presented in Section 2.2 based on the paper:

• Nikita Doikov and Yurii Nesterov. Local convergence of tensor meth-
ods, Mathematical Programming, 2021 [41].
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Chapter 1. Introduction

New affine-invariant second- and high-order methods. We develop
new affine-invariant algorithms for solving the composite convex minimiza-
tion problem with bounded domain. We present a general framework of
Contracting-Point Methods, which solve at each iteration an auxiliary sub-
problem restricting the smooth part of the objective function onto contrac-
tion of the initial domain. This framework provides us with a systematic
way for developing optimization methods of different order, endowed with
the global complexity bounds. We show that using an appropriate affine-
invariant smoothness condition, it is possible to implement one iteration
of the Contracting-Point Method by one step of the pure tensor method of
degree p ≥ 1. The resulting global rate of convergence in functional residual
is then O(1/kp), where k is the iteration counter. It is important that all
constants in our bounds are affine-invariant. For p = 1, our scheme recovers
the well-known Frank-Wolfe algorithm, providing it with a new interpreta-
tion by a general perspective of tensor methods. For p = 2, we obtain new
second-order scheme called Contracting Newton Method, which has global
convergence of the order O(1/k2). It can be seen as an implementation of
the trust-region idea.

Further, we study a performance of the contracting second-order schemes
under the assumption of Hölder continuous Hessian of degree ν ∈ [0, 1]
(w.r.t. arbitrary norm). First, we introduce a new global second-order
lower model of a smooth function. Then, we show that the Contracting
Newton Method at every iteration minimizes this lower approximation of the
smooth component of the objective augmented by the composite term. We
prove the global rate of the order O(1/k1+ν) in the general convex case. For
strongly convex functions, we establishO(1/k2+2ν) for the universal scheme.
And if the parameters of the problem class are known, we can prove a
global linear rate. Finally, we present aggregated models which accumulate
second-order information into quadratic Estimating Functions. This leads
to another optimization process, called Aggregating Newton Method, with
the global convergence of the same order O(1/k1+ν) as for general convex
case. The latter method can be seen as a second-order counterpart of the
dual averaging gradient schemes [112, 116].

These results are presented in Sections 3.1, 3.2 and based on the papers:

• Nikita Doikov and Yurii Nesterov. Convex optimization based on
global lower second-order models, Advances in Neural Information Pro-
cessing Systems (NeurIPS), 2020 [39].

• Nikita Doikov and Yurii Nesterov. Affine-invariant contracting-point
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1.1. Overview of the Contributions

methods for convex optimization, CORE Discussion Papers 2020/29
[37].

New contracting proximal algorithms. Utilizing contraction tech-
nique, we propose new accelerated methods for Smooth Convex Optimiza-
tion called Contracting Proximal Methods. At every step, we need to min-
imize a contracted version of the objective function augmented by a regu-
larization term in the form of Bregman divergence. This approach can be
interpreted as a combination of contracting-point and proximal-point ideas.
For our general scheme, we provide global convergence analysis admitting
inexactness in solving the auxiliary subproblem. In the case of using for
this purpose the basic Tensor Method of order p ≥ 1, we demonstrate an
acceleration effect for both convex and uniformly convex composite objec-
tive function. The global convergence of the resulting scheme is O(1/kp+1)
in the general convex case. Thus, our construction explains acceleration for
methods of any order starting from one. The augmentation of the number
of calls of oracle due to computing the contracted proximal steps, is limited
by the logarithmic factor in the worst-case complexity bound.

We present these results in Section 3.3 based on the paper:

• Nikita Doikov and Yurii Nesterov. Contracting proximal methods for
smooth convex optimization, SIAM Journal on Optimization, 2020
[38].

Efficient inexact and stochastic second- and high-order methods
with global complexity guarantees. First, we study inexact high-order
Tensor Methods. At every step of such methods, we use the approximate
solution to the auxiliary problem, defined by the bound for the residual in
function value. We propose two dynamic strategies for choosing the inner
accuracy: the first one is decreasing as 1/kp+1, where p ≥ 1 is the order of
the method and k is the iteration counter, and the second approach is using
for the inner accuracy the last progress in the target objective. We show
that inexact Tensor Methods with these strategies achieve the same global
convergence rate as in the error-free case. For the second approach, when
objective is strongly convex, we establish global linear rates as well, and
local superlinear rates when p ≥ 2. We also consider acceleration of inexact
Tensor Methods, using our Contracting Proximal iteration with dynamic
condition of inexactness defined in terms of the residual in function value.
Lastly, we present computational results on a variety of machine learning

11



Chapter 1. Introduction

problems for several methods and different accuracy policies.
Then we propose a two-level optimization scheme, which is the imple-

mentation of the inexact Contracting Newton Method, via computing its
steps by the first-order Conditional Gradient Method. For the resulting
algorithm, we establish the global complexity O(ε−1/2) calls of the second-
order local oracle (computing the gradient and the Hessian of the smooth
part of the objective), and O(ε−1) calls of the linear minimization oracle of
the composite part, where ε > 0 is the required accuracy in the functional
residual. Additionally, we address efficient implementation of our method
for optimization over the standard simplex. Numerical experiments with
our scheme confirm its good practical performance both in the number of
iterations, and in computational time.

Finally, we consider the problem of finite-sum minimization. We develop
stochastic extensions of our Contracting Newton Method. During the itera-
tions of the basic variant, we need to increase the batch size for randomized
estimates of gradients and Hessians up to the order O(k4) and O(k2) re-
spectively. Using the variance reduction technique [141] for the gradients,
we reduce the batch size up to the level O(k2) for both estimates. At the
same time, the global convergence rate of the resulting methods is of the
order O(1/k2), as for general convex functions with Lipschitz continuous
Hessian. We present computational results for solving empirical risk mini-
mization problem, comparing new second-order algorithms with stochastic
first-order methods.

These results are presented in Chapter 4. Section 4.1 is based on the
paper:

• Nikita Doikov and Yurii Nesterov. Inexact tensor methods with dy-
namic accuracies, International Conference on Machine Learning
(ICML), 2020 [40].

Sections 4.2 and 4.3 are based on the aforementioned papers [37, 39], re-
spectively.
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1.2 Table of Algorithms
In the following table, we list optimization algorithms that we analyse in
this thesis. The methods from Chapters 3 and 4 are all new.

Chapter 1
Gradient Method (1.3.10)
Newton’s Method (1.4.1)
Damped Newton (1.4.4)
Cubic Newton (1.4.9)
Tensor Method (1.5.1)
Computing Inexact Tensor Step for p = 3 (1.5.3)

Chapter 2
Regularized Newton (2.1.19)
Adaptive Cubic Newton (2.1.22)
Proximal-Point Method (2.2.26)

Chapter 3
Conceptual Contracting-Point Methods I, II (3.1.4), (3.1.10)
Contracting-Point Tensor Methods I, II (3.1.22), (3.1.24)
Contracting Newton I, II (3.2.10), (3.2.23)
Aggregating Newton (3.2.30)
Contracting Proximal Method (3.3.22)
Contracting Proximal Tensor Method (3.3.58)

Chapter 4
Monotone Inexact Tensor Methods I, II (4.1.4), (4.1.14)
Inexact Tensor Method with Averaging (4.1.31)
Inexact Accelerated Scheme (4.1.35)
Inexact Contracting Newton (4.2.2)
Stochastic Contracting Newton (4.3.2)
Stochastic Variance-Reduced Contracting Newton (4.3.14)

Now, let us present global rates of convergence in terms of the functional
residual for different first-order, second-order, and tensor methods on gen-
eral convex functions, which are several times differentiable. We use Õ(·)
to hide logarithmic terms that depend on the target accuracy. We denote
by k the iteration counter. Our results are marked as new.
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Chapter 1. Introduction

First-order methods

Method Rate Assumption
Affine-
invariant

Gradient Method [117] O(k−1) Lipschitz grad. −
Frank-Wolfe Algorithm [52] O(k−1) Bounded dom. +
Fast Gradient Method [107] O(k−2) Lipschitz grad. −

Second-order methods

Newton’s Method [117] — +
Prox. Point + Newton’s (new) Õ(k−1.5) Lipschitz Hess. −
Cubic Newton [124] O(k−2) Lipschitz Hess. −
Contracting Newton (new) O(k−2) Bounded dom. +
Aggregating Newton (new) O(k−2) Bounded dom. +
Contracting Proximal Method
+ Cubic Newton (new)

Õ(k−3) Lipschitz Hess. −

Accel. Cubic Newton [111] O(k−3) Lipschitz Hess. −
Accel. Cubic Newton
+ line search [101, 117]

Õ(k−3.5) Lipschitz Hess. −

Third-order Prox. Point
+ second-order impl. [120]

Õ(k−4) Lipschitz grad.
and third deriv.

−

Third-order Prox. Point
+ second-order impl.
+ line search [121]

Õ(k−5) Lipschitz grad.
and third deriv.

−

Tensor methods of order p ≥ 1

Prox. Point + Tensor (new) Õ(k−
p+1

2 ) Lipschitz p-th deriv. −

Basic Tensor Method [118] O(k−p) Lipschitz p-th deriv. −
Contracting-Point
Tensor Method (new)

O(k−p) Bounded dom. +

Contracting Proximal Method
+ Tensor Method (new)

Õ(k−(p+1)) Lipschitz p-th deriv. −

Accel. Tensor [118] O(k−(p+1)) Lipschitz p-th deriv. −

Accel. Tensor + line search [54] Õ(k−
3p+1

2 ) Lipschitz p-th deriv. −

We discuss elements from the tables in the further sections of the thesis.
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1.3. Smooth Convex Optimization

1.3 Smooth Convex Optimization

We start with a formal statement of our target optimization problem, and
specify the basic notation which is necessary for all statements in the thesis.
The definition of Lipschitz continuity is coupled with a number of examples
and some useful properties. Then, we briefly review the classical Gradient
Method as an introduction into the subject of Smooth Convex Optimiza-
tion. For an exhaustive study of the topic we refer to the classic books and
lecture notes [117, 10, 14, 127, 130]. The Gradient Method serves as an im-
portant baseline to our further developments in second-order and high-order
methods.

1.3.1 Preliminaries and Notation

We denote by E a finite-dimensional real vector space. Then, our main
problem of interest can be formulated in the composite form, as follows:

min
x

{
F (x) def= f(x) + ψ(x)

}
, (1.3.1)

where ψ : E → R ∪ {+∞} is a simple proper closed convex function, and
function f is convex and several times continuously differentiable at every
point x ∈ domψ = {x ∈ E : ψ(x) < +∞}.

Example 1.3.1. When ψ(x) ≡ 0, (1.3.1) becomes the unconstrained min-
imization problem with a smooth convex objective:

min
x∈E

f(x).

Example 1.3.2. Let Q ⊆ E be a simple closed convex set, and ψ be its
{0,+∞}-indicator:

ψ(x) =
{

0, x ∈ Q,
+∞, otherwise.

Then, problem (1.3.1) is to minimize f over Q:

min
x∈Q

f(x).
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Chapter 1. Introduction

Example 1.3.3. Let E = Rn and

ψ(x) = ‖x‖1
def=

n∑
i=1
|x(i)|.

Then, (1.3.1) is a problem with `1-regularization.

Thus, the framework of composite optimization [114] provides a unified
way to treat the constrained problems and the problems with explicit non-
differentiable components. The main requirement is that ψ should have a
simple structure, which means that corresponding auxiliary subproblems are
efficiently solvable. We will see examples of subproblems when discussing
the methods. Typically, we substitute some model for f in (1.3.1), while
the composite component ψ remains unchanged.

Having fixed the primal vector space E, we denote by E∗ its dual space,
which is a space of linear functions on E. The value of linear function s ∈ E∗

on vector x ∈ E is denoted by 〈s, x〉 def= s(x). Of course, one can always
identify E and E∗ with Rn, when some basis is fixed, but often it is useful
to separate these spaces, in order to avoid ambiguities.

For a smooth function f : dom f → R, where dom f ⊆ E is open, we
denote by ∇f(x) its gradient and by ∇2f(x) its Hessian, evaluated at point
x ∈ dom f ⊆ E. Note that

∇f(x) ∈ E∗, ∇2f(x)h ∈ E∗,

for all h ∈ E. For p ≥ 1, we denote byDpf(x)[h1, . . . , hp] the p-th directional
derivative of f along directions h1, . . . , hp ∈ E. Note that Dpf(x) is a p-
linear symmetric form on E. If hi = h for all 1 ≤ i ≤ p, a shorter notation
Dpf(x)[h]p is used. For its gradient in h, we use the following notation:

Dpf(x)[h]p−1 def= 1
p∇hD

pf(x)[h]p ∈ E∗, h ∈ E.

In particular, D1f(x)[h]0 ≡ ∇f(x), and D2f(x)[h]1 ≡ ∇2f(x)h.

For a convex but not necessary differentiable function ψ, we denote by
∂ψ(x) ⊆ E∗ its subdifferential at point x ∈ domψ ⊆ E:

∂ψ(x) def=
{
g ∈ E∗ : ∀y ∈ domψ (ψ(y) ≥ ψ(x) + 〈g, y − x〉)

}
.
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1.3. Smooth Convex Optimization

We denote by x∗ a solution to problem (1.3.1), assuming that it exists:

x∗ ∈ Argmin
x

F (x), F ∗
def= F (x∗).

Then, this point satisfies the following optimality condition (see, e.g. The-
orem 3.1.23 in [117]):

〈∇f(x∗), x− x∗〉+ ψ(x) ≥ ψ(x∗), x ∈ domψ. (1.3.2)

In other words, the following inclusion holds:

−∇f(x∗) ∈ ∂ψ(x∗).

From now on, let us fix some self-adjoint positive-definite linear operator
B : E → E∗ (notation B = B∗ � 0). We use it to endow the primal space
with the Euclidean norm:

‖x‖ def= 〈Bx, x〉1/2, x ∈ E.

Then, the norm for the dual space is induced in the standard way,

‖s‖∗
def= max

h∈E

{
〈s, h〉 : ‖h‖ ≤ 1

}
= 〈s,B−1s〉1/2, s ∈ E∗.

In what follows, we work with the Euclidean norms, unless the contrary is
explicitly stated (we will consider general norms in Chapter 3).

For any linear operator A : E→ E∗ its norm is defined as

‖A‖ def= max
h∈E

{
‖Ah‖∗ : ‖h‖ ≤ 1

}
.

Similarly, the norm of Dpf(x) for any p ≥ 1 is induced by the Euclidean
norm for the primal space, as follows:

‖Dpf(x)‖ def= max
h1,...,hp∈E

{
Dpf(x)[h1, . . . , hp] : ∀i (‖hi‖ ≤ 1)

}
= max

h∈E

{
|Dpf(x)[h]p| : ‖h‖ ≤ 1

}
.

See Appendix 1 in [123] for the proof of the last equation, which is valid for
any multilinear symmetric form.

The norm can be used to characterize the smoothness of our objective.
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We say that for some p ≥ 1, the p-th derivative of f is Lipschitz continuous
on a convex set Q ⊆ dom f , if for all x, y ∈ Q, it holds

‖Dpf(x)−Dpf(y)‖

def= max
h∈E

{
|Dpf(x)[h]p −Dpf(y)[h]p| : ‖h‖ ≤ 1

}
≤ Lp‖x− y‖,

(1.3.3)

with some positive constant Lp. For p = 1, we get the functions with
Lipschitz continuous gradient, and for p = 2, with Lipschitz continuous
Hessian.

Let Q be a convex set. For k times continuously differentiable on Q func-
tions, whose p-th derivative (p ≤ k) is Lipschitz continuous, the standard
notation is

f ∈ Ck,p(Q).

When p < k and Q is an open convex set, Lipschitz continuity is equivalent
to the boundness of the higher (p+ 1)th derivative. This fact can be useful
for computing the corresponding Lipschitz constants.

Example 1.3.4. For the power of the Euclidean norm

f(x) = 1
p+1‖x− x0‖p+1, p ≥ 1, x, x0 ∈ E,

(1.3.3) holds for all x, y ∈ E with Lp = p! (see Theorem 7.1 in [136]).

Example 1.3.5. For given linear functions ai ∈ E∗, 1 ≤ i ≤ m, consider
the following convex function (SoftMax):

f(x) = log
(

m∑
i=1

e〈ai,x〉
)
, x ∈ E.

Let us use operator B =
∑m
i=1 aia

∗
i : E→ E∗, that is defined by the equation

Bh =
m∑
i=1

aia
∗
i h =

m∑
i=1
〈ai, h〉ai, ∀h ∈ E.

We assume that B � 0 (i.e. 〈Bh, h〉 > 0 for any h ∈ E), otherwise we can
reduce dimensionality of the problem. Then, (1.3.3) holds for all x, y ∈ E
with

L1 = 1, L2 = 2, L3 = 4.
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Proof. Denote κ(x) =
∑m
i=1 e

〈ai,x〉. Let us fix arbitrary x, y ∈ E and direc-
tion h ∈ E. Then, straightforward computation gives:

〈∇f(x), h〉 = 1
κ(x)

∑m
i=1 e

〈ai,x〉〈ai, h〉,

〈∇2f(x)h, h〉 = 1
κ(x)

∑m
i=1 e

〈ai,x〉〈ai, h〉2 −
( 1
κ(x)

∑m
i=1 e

〈ai,x〉〈ai, h〉
)2

= 1
κ(x)

∑m
i=1 e

〈ai,x〉 (〈ai, h〉 − 〈∇f(x), h〉)2 ≥ 0.

Hence, we get,

‖∇2f(x)‖ = max
‖h‖≤1

〈∇2f(x)h, h〉 ≤ max
‖h‖≤1

∑m
i=1〈ai, h〉2

= max
‖h‖≤1

‖h‖2 = 1.

Thus we obtain L1 = 1. For higher derivatives, we have the following
representations:

D3f(x)[h]3 = 1
κ(x)

m∑
i=1

e〈ai,x〉 (〈ai, h〉 − 〈∇f(x), h〉)3

≤ 〈∇2f(x)h, h〉 max
1≤i,j≤m

〈ai − aj , h〉 ≤ 2‖h‖3,

and

D4f(x)[h]4 = 1
κ(x)

m∑
i=1

e〈ai,x〉 (〈ai, h〉 − 〈∇f(x), h〉)4 − 3〈∇2f(x)h, h〉2

≤ D3f(x)[h]3 max
1≤i,j≤m

〈ai − aj , h〉 ≤ 4‖h‖4,

which give L2 = 2 and L3 = 4.

Example 1.3.6. Using E = R, and a1 = 0, a2 = 1 in the previous example,
we obtain the logistic regression loss function:

f(x) = log(1 + ex), x ∈ R.

However, a more specific analysis provides us with the following estimates
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for its Lipschitz constants, which are tight:

L1 = 1
4 , L2 = 1

6
√

3 , L3 = 1
8 .

Proof. Denote σ(x) = f ′(x) = 1
1+e−x .

Direct calculations give:

σ′(x) = σ(x) · (1− σ(x)),

σ′′(x) = σ′(x) · (1− 2σ(x)),

σ′′′(x) = σ′(x) · (6σ(x)2 − 6σ(x) + 1)

= 6σ′(x) · (σ(x)− 1
2 −

1
2
√

3 ) · (σ(x)− 1
2 + 1

2
√

3 ),

σ(4)(x) = σ′′(x) · (12σ(x)2 − 12σ(x) + 1)

= σ′′(x) · (σ(x)− 1
2 −

1√
6 ) · (σ(x)− 1

2 + 1√
6 ).

Hence, considering the stationary points, we get

max
x∈R

f ′′(x) = max
x∈R

σ′(x) = α · (1− α)
∣∣
α= 1

2
= 1

4 ,

max
x∈R
|f ′′′(x)| = max

x∈R
|σ′′(x)|

= max
{
|α · (1− α) · (1− 2α)| : α = 1

2 ±
1

2
√

3

}
=

∣∣∣( 1
2 + 1

2
√

3

)
·
( 1

2 −
1

2
√

3

)
· 1√

3

∣∣∣ = 1
6
√

3 ,

and finally

max
x∈R
|f (4)(x)| = max

x∈R
|σ′′′(x)|

= max
{
|α · (1− α) · (6α2 − 6α+ 1)| : α ∈ { 1

2 ,
1
2 ±

1√
6}
}

= |α · (1− α) · (6α2 − 6α+ 1)|
∣∣∣
α= 1

2

= 1
8 .
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Taylor’s polynomial is a standard tool of Numerical Analysis. For a
smooth function f , integer number p ≥ 1, and given x ∈ dom f , denote

Ωp(f, x; y) def= f(x) +
p∑
i=1

1
i!D

if(x)[y − x]i. (1.3.4)

For f ∈ Cp,p(Q), we can globally bound the residual between the function
and its polynomial approximation Ωp(f, x; y) ≈ f(y), as follows.

Lemma 1.3.7. For all x, y ∈ Q, it holds

|f(y)− Ωp(f, x; y)| ≤ Lp‖y−x‖p+1

(p+1)! , (1.3.5)

‖∇f(y)−∇Ωp(f, x; y)‖∗ ≤ Lp‖y−x‖p
p! , (1.3.6)

‖∇2f(y)−∇2Ωp(f, x; y)‖ ≤ Lp‖y−x‖p−1

(p−1)! . (1.3.7)

Proof. Indeed, by Taylor’s theorem, we have

|f(y)− Ωp(f, x; y)|

= |
1∫
0

(1−τ)p−1

(p−1)! Dpf(x+ τ(y − x))[y − x]pdτ − 1
p!D

pf(x)[y − x]p|

= |
1∫
0

(1−τ)p−1

(p−1)!
(
Dpf(x+ τ(y − x))[y − x]p −Dpf(x)[y − x]p

)
dτ |

(1.3.3)
≤ Lp‖y−x‖p+1

(p−1)!

1∫
0

(1− τ)p−1τdτ = Lp‖y−x‖p+1

(p+1)! .

Applying the same reasoning to functions 〈∇f(·), h〉 and 〈∇2f(·)h, h〉 with
direction h ∈ E being fixed, we get (1.3.6) and (1.3.7).

We say that a differentiable function f is strongly convex on a convex
set Q ⊆ dom f if it satisfies inequality

f(y) ≥ f(x) + 〈∇f(x), y − x〉+ µ‖y−x‖2

2 , ∀x, y ∈ Q, (1.3.8)

for some constant µ > 0. For a strongly convex objective, the solution to
minimization problem (1.3.1) always exists and unique [117].
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Sometimes, we need to use the following technical bound. It can be
immediately seen from the geometrical meaning of integration.

Lemma 1.3.8. For every s > 1, the following inequality holds:

k∑
i=1

1
is ≤ s

s−1 , ∀k ≥ 1. (1.3.9)

Proof. The statement easily follows by observing that

k∑
i=1

1
is = 1 +

k∑
i=2

1
is ≤ 1 +

+∞∫
1

dx
xs = s

s−1 . �

1.3.2 The Gradient Method

A classical first-order optimization scheme is called the Gradient Method.
At each iteration, we substitute the linear approximation with a quadratic
regularizer for the smooth part of the composite objective. Then, we use
the minimum of the current model as the next point of the process:

x0 ∈ domψ, k ≥ 0 :

xk+1 = argmin
y

{
f(xk) + 〈∇f(xk), y − xk〉+ Hk‖y−xk‖2

2

+ ψ(y)
}
.

(1.3.10)

When ψ(x) ≡ 0, one iteration of this method can be rewritten in the
following canonical form:

xk+1 = xk − 1
Hk
B−1∇f(xk).

Therefore, operator B plays the role of a fixed preconditioner. For a par-
ticular problem instance, we can try to pick it in a way to improve the
smoothness characteristics of the objective (see Example 1.3.5).

In the general case, performing the composite gradient step for arbitrary
ψ is related to computing the corresponding prox-operator [8].

Parameter Hk should be chosen so as to have a significant decrease in
the function value at every iteration. This can be achieved by ensuring the
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following upper bound:

f(xk+1) ≤ f(xk) + 〈∇f(xk), xk+1 − xk〉+ Hk‖xk+1−xk‖2

2 , (1.3.11)

which holds for the constant step size ruleHk ≡ L1 due to inequality (1.3.5).
If the Lipschitz constant is not known, a simple adaptive search for Hk

can be performed to ensure (1.3.11) (see [114]). Alternative strategies for
choosing Hk include the Polyak’s stepsize rule [129, 130] (see also [70]), and
the adaptive rule from [99].

Let us assume that the gradient of the smooth part is Lipschitz contin-
uous (L1 < +∞). Then, the Gradient Method (1.3.10) needs

K = O
(
L1‖x0−x∗‖2

ε

)
(1.3.12)

iterations to find an ε-solution in the functional residual: F (xK)− F ∗ ≤ ε

[114]. For strongly convex functions, the rate of convergence is linear, and
the corresponding iteration complexity up to logarithmic factors depends
only on the condition number of the problem:

K = O
(
L1
µ log F (x0)−F∗

ε

)
. (1.3.13)

We recover these complexity estimates in Theorems 2.2.7 and 2.2.9 from
Chapter 2 as a particular case p = 1.

For the same problem classes, we can get an accelerated rate of conver-
gence by using the Fast Gradient Method [107, 114], achieving

O
(√

L1‖x0−x∗‖2

ε

)
and O

(√
L1
µ log F (x0)−F∗

ε

)
complexity estimates, correspondingly. These rates are known to be optimal
for the first-order black-box optimization [106, 102].

An additional advantage of using the adaptive search over parameter
Hk within the gradient methods is that the algorithm becomes universal,
meaning that it can automatically adapt to different problem classes [115].
We discover this phenomenon in the context of regularized Newton methods
in Section 2.1 of Chapter 2.

See also [36, 34] for studies of the gradient methods with inexact or
stochastic first-order oracle information.
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1.4 Second-Order Methods in Optimization
Now we are going to review second-order numerical optimization schemes.
In such algorithms at each iteration we can exploit second-order local oracle
for the smooth part of the objective. The oracle returns the function value,
the gradient and the Hessian, computed at the given point. Having more
information about the objective, the second-order algorithms are expected
to be more powerful than the gradient methods.

1.4.1 Newton’s Method
In the classical Newton’s Method, we approximate the smooth part f of the
objective by its second-order Taylor’s polynomial evaluated at the current
point. The composite part ψ remains unchanged. The next point is defined
as a minimum of this model (we assume that a finite minimum exists).
Hence, iterations of Newton’s Method for solving problem (1.3.1) can be
represented as follows:

x0 ∈ domψ, k ≥ 0 :

xk+1 ∈ Argmin
y

{
f(xk) + 〈∇f(xk), y − xk〉

+ 1
2 〈∇

2f(xk)(y − xk), y − xk〉+ ψ(y)
}
.

(1.4.1)

When ψ(x) ≡ 0 and the Hessian is invertible, the step of the method can
be rewritten in a shorter form:

xk+1 = xk − (∇2f(xk))−1∇f(xk).

Comparing with the Gradient Method, each step of method (1.4.1) is obvi-
ously more expensive. However, we can hope that the second-order infor-
mation may significantly accelerate the rate of convergence.

The standard and well-known result about Newton’s Method is its local
quadratic convergence [78, 117]. Later on, it was generalized to the case
of composite optimization problems [89]. Local superlinear convergence
of the Incremental Newton method for finite-sum minimization problems
was established in [134]. See [137, 138] for a modern study of the local
superlinear convergence of the quasi-Newton methods.

Let us present a simple proof of the local quadratic rate for method (1.4.1).
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1.4. Second-Order Methods in Optimization

Theorem 1.4.1. Let f ∈ C2,2(domψ), so the Hessian ∇2f(·) is Lipschitz
continuous on domψ with constant 0 < L2 < +∞.

Let x∗ be a solution to problem (1.3.1) with ∇2f(x∗) � µB for some
positive µ.

Let xk belong to a neighbourhood of x∗:

xk ∈ U
def=

{
x ∈ domψ : ‖x− x∗‖ ≤ 2µ

3L2

}
.

Then, for one step of method (1.4.1), we have xk+1 ∈ U and the rate of
convergence is quadratic:

‖xk+1 − x∗‖ ≤ L2
2(µ−L2‖xk−x∗‖)‖xk − x

∗‖2. (1.4.2)

Proof. Let us plug x = xk+1 into the stationary condition (1.3.2) for x∗.
Thus we get

〈∇f(x∗), xk+1 − x∗〉+ ψ(xk+1) ≥ ψ(x∗). (1.4.3)

At the same time, the stationary condition for one Newton’s step is

〈∇f(xk) +∇2f(xk)(xk+1 − xk), x− xk+1〉+ ψ(x) ≥ ψ(xk+1),

for all x ∈ domψ. Summing up this inequality for x = x∗ with (1.4.3), we
obtain

0 ≤ 〈∇f(x∗)−∇f(xk)−∇2f(xk)(xk+1 − xk), xk+1 − x∗〉

= 〈∇f(x∗)−∇f(xk)−∇2f(xk)(x∗ − xk), xk+1 − x∗〉

− 〈∇2f(xk)(xk+1 − x∗), xk+1 − x∗〉

(1.3.6)
≤ L2‖xk−x∗‖2·‖xk+1−x∗‖

2 − 〈∇2f(xk)(xk+1 − x∗), xk+1 − x∗〉.

Hence, assuming the nontrivial case xk+1 6= x∗, we get

L2‖xk−x∗‖2

2 ≥ 〈∇2f(xk)(xk+1−x∗),xk+1−x∗〉
‖xk+1−x∗‖

≥ 〈∇2f(x∗)(xk+1−x∗),xk+1−x∗〉−L2‖xk−x∗‖·‖xk+1−x∗‖2

‖xk+1−x∗‖

≥ (µ− L2‖xk − x∗‖) · ‖xk+1 − x∗‖,
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which proves the required bound.

Remark 1.4.2. Let us denote β def= 2µ
3L2

and δk
def= β‖xk − x∗‖.

Assume x0 ∈ intU . Then, δ0 < 1. According to (1.4.2), it holds

δk ≤ δ2
k−1 ≤ δ22

k−2 ≤ δ23

k−3 ≤ . . . ≤ δ2k
0 .

Therefore, we have ‖xk − x∗‖ ≤ ε after

k ≥ log2 log2
1
βε − log2 log2

1
δ0
.

iterations of Newton’s Method.

We see that the method starts to double the number of the right digits
of the answer every step, when it enters the neighbourhood of x∗. This is
a very fast convergence, and for all practical purposes a small number of
steps is enough to solve the problem. However, there is no evidence how
long it can take to enter U .

Example 1.4.3. Consider the following minimization problem:

min
x∈R

{
f(x) = log(1 + exp(x))− x

2 + µx2

2

}
.

Clearly, the objective is strongly convex with parameter µ > 0, and its
second derivative is Lipschitz continuous with constant L2 = 1

6
√

3 (Exam-
ple 1.3.6). The optimal point is x∗ = 0.

Hence, according to Theorem 1.4.1, the region of quadratic convergence
of Newton’s Method is U = {x ∈ R : |x| ≤ 4

√
3µ}.

Let us fix µ = 10−2, and choose x0 = 50, which is outside of the region.
Then, one Newton’s step produces the point

x1 = x0 − f ′(x0)
f ′′(x0) = 50− σ(50)

σ(50)·(1−σ(50))+10−2 ,

with σ(50) = 1
1+e−50

m= 1 (in the machine precision). So, x1
m= −50. Conse-

quently,

x2 = x1 − f ′(x1)
f ′′(x1)

m= −50− σ(−50)−1
σ(−50)·(1−σ(−50))+10−2 ,

with σ(−50) = 1
1+e50

m= 0, and thus x2
m= 50.

Therefore, Newton’s Method starts to oscillate between the points 50
and −50 (see Figure 1.1).
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Figure 1.1: Oscillation of the classical Newton’s Method.

1.4.2 Damped Newton Method

In order to globalize Newton’s iterations, we may incorporate into the
method an auxiliary sequence of positive coefficients {γk}k≥0.

When γk ≤ 1, the following algorithm is usually called the Damped
Newton Method:

x0 ∈ domψ, k ≥ 0 :

xk+1 ∈ Argmin
y

{
f(xk) + 〈∇f(xk), y − xk〉

+ 1
2γk 〈∇

2f(xk)(y − xk), y − xk〉+ ψ(y)
}
.

(1.4.4)

Without the composite term, the iterations are as follows (assuming the
Hessian is invertible):

xk+1 = xk − γk(∇2f(xk))−1∇f(xk).

Therefore, for γk = 1 we obtain the standard Newton’s step. To ensure the
global rate, we need to pick up the coefficients in a smarter way. A natural
choice for γk is to certify that the new function value f(xk+1) is upper
bounded by the minimum of the Damped Newton model:

f(xk+1) ≤ f(xk) + 〈∇f(xk), xk+1 − xk〉

+ 1
2γk 〈∇

2f(xk)(xk+1 − xk), xk+1 − xk〉.
(1.4.5)
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Then we would have the progress in the objective value at each step of the
method, and the following global convergence guarantee holds.

Theorem 1.4.4. Let for some positive parameters µ and L1,

µB � ∇2f(x) � L1B, ∀x ∈ domψ. (1.4.6)

Thus f is strongly convex, and we assume it belongs to C2,1(domψ). Let
inequality (1.4.5) be satisfied for some γk ≥ µ

2L1
.

Then, we have the global linear rate:

F (xk+1)− F ∗ ≤
(

1− 1
8 ·
(
µ
L1

)2) · (F (xk)− F ∗). (1.4.7)

Proof. Indeed, for arbitrary y ∈ domψ, we have

F (xk+1) = f(xk+1) + ψ(xk+1)

(1.4.6)
≤ f(xk) + 〈∇f(xk), xk+1 − xk〉

+ 1
2γk 〈∇

2f(xk)(xk+1 − xk), xk+1 − xk〉+ ψ(xk+1)

≤ f(xk) + 〈∇f(xk), y − xk〉

+ 1
2γk 〈∇

2f(xk)(y − xk), y − xk〉+ ψ(y)

≤ F (y) + L2
1‖y−xk‖

2

µ ,

where in the last inequality we used (1.4.6), the lower bound for γk, and
the convexity of f .

Now, let us take y = αx∗ + (1 − α)xk, for α = µ2

4L2
1
∈ (0, 1). Therefore,

using the strong convexity of F , we obtain

F (xk+1) ≤ αF ∗ + (1− α)F (xk) + L2
1α

2‖xk−x∗‖2

µ

≤ αF ∗ + (1− α)F (xk) + 2L2
1

µ2 α
2(F (xk)− F ∗).

Hence,

F (xk+1)− F ∗ ≤
(
1− α+ 2L2

1
µ2 α

2) · (F (xk)− F ∗).
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1.4. Second-Order Methods in Optimization

Substituting the above value of α completes the proof.
It is clear that the constant choice γk ≡ µ

L1
satisfies the conditions of

Theorem 1.4.4. In practice though, we may run a simple adaptive search to
fit the value of the coefficients (analogously to that one used in the gradient
methods). In any case, it is important to switch regularly between the pure
Newton’s step γk = 1 to have the local superlinear guarantee as well.

According to the bound (1.4.7), we get F (xK)− F ∗ ≤ ε after

K = O
((

L1
µ

)2 log F (x0)−F∗
ε

)
(1.4.8)

iterations of method (1.4.4). The good news is that this is a global guarantee
and hence the Damped Newton Method converges to the optimum starting
from an arbitrary initial point.

However, estimate (1.4.8) is much worse than the corresponding one
(1.3.13) of the basic Gradient Method. This fact seems to be disappointing.
Indeed, we use additional second-order information about the objective in
algorithm (1.4.4), and the computations are more expensive. At the same
time, from the theoretical perspective, we are not gaining any clear advan-
tages until entering the region of quadratic convergence.

Another valuable observation is that the Newton’s Method is entirely
defined using only affine-invariant objects. Thus it does not depend on
the choice of coordinate system or particular norms. Theorem 1.4.1 and
Theorem 1.4.4 both use an artificial operator B (which we fix to define the
Euclidean norm).

The framework of self-concordant functions [123, 117] was developed
for the affine-invariant characterization of the Newton’s Method. However,
when the problem class is more specialized, the cubic regularization tech-
nique provides us with the better complexity guarantees [49].

1.4.3 Cubic Regularization

The Cubic Newton Method can be represented as follows:

x0 ∈ domψ, k ≥ 0 :

xk+1 = argmin
y

{
f(xk) + 〈∇f(xk), y − xk〉

+ 1
2 〈∇

2f(xk)(y − xk), y − xk〉+ Hk‖y−xk‖3

6 + ψ(y)
}
.

(1.4.9)
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When ψ(x) ≡ 0, the cubic step satisfies the following nonlinear system of
equations:

xk+1 = xk −
(
∇2f(xk) + Hkrk

2 B
)−1∇f(xk),

rk = ‖xk+1 − xk‖.
(1.4.10)

In this form, it is similar to the Levenberg-Marquardt regularization [92, 97]
approach, which performs the Newton step xk+1 = xk − G−1

k ∇f(xk) with
a modified Hessian matrix Gk = ∇2f(xk) + γkB � 0.

Another interpretation of equations (1.4.10) is related to the trust-region
idea [30]: at each step of the method, we restrict the quadratic model onto
a neighbourhood of the current point ∆(xk) = {x : ‖x − xk‖ ≤ εk} for a
certain εk > 0.

To produce the solution of (1.4.10), let us consider the following auxiliary
function,

h(r) def= ‖s(r)‖ − r, r > 0,

where
s(r) def=

(
∇2f(xk) + Hkr

2 B
)−1∇f(xk),

for some fixed k ≥ 0. Note that the value of rk from the method step (1.4.10)
solves the equation

h(r) = 0. (1.4.11)

Hence, it can be computed by using a univariate numerical method that
finds the root of (1.4.11). Recall that due to convexity, we always have
∇2f(xk) � 0. The derivative of h(·) is equal to

h′(r) = − Hk
2‖s(r)‖ 〈Bs(r), (∇

2f(xk) + Hkr
2 B)−1Bs(r)〉 − 1 < 0,

and thus the function is monotonically decreasing. Moreover, by directly
computing the second derivative, we conclude that the function h(·) is con-
vex. Its graph is shown in Figure 1.2.

We can use the standard bisection method to solve (1.4.11). A more
efficient strategy is to apply the univariate Newton’s Method, one iteration
of which is

r+ = r − h(r)
h′(r) . (1.4.12)

If we start the process from the region of positive values of h(r), then it
is possible to guarantee the linear rate of convergence with factor 1

2 for
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Figure 1.2: The root of the auxiliary univariate function that corresponds to
the Cubic Newton step.

method (1.4.12) as applied to (1.4.11) (see Appendix A.1 in [117]). In
practice, the convergence of the univariate Newton’s Method can be even
faster.

It is reasonable to precompute the eigenvalue or the tridiagonal decom-
position of the Hessian in advance, then each step of the univariate method
takes only linear time in the problem dimension (which is for solving the cor-
responding linear systems). Hence, the arithmetical cost of computing the
Cubic Newton step is comparable to that one of the classical Newton’s. See
also [124, 58] for more detailed analysis of the cubic subproblem, and [30]
for techniques developed for trust-region methods.

Both factorized-based and matrix-free Lanczos approaches for the cubic
subproblem were considered in detail in [21] for the first time. The use
of the gradient methods for computing an inexact cubic step was studied
in [18, 120]. Randomized versions of the Cubic Newton suitable for solving
high-dimensional problems were proposed in [28, 44, 68].

If the Lipschitz constant L2 is known, we can set Hk ≡ L2. Alterna-
tively, one can use adaptive estimation of the regularization parameter (we
study the Adaptive Cubic Newton, algorithm (2.1.22) in Section 2.1 from
Chapter 2).

For the class of convex functions with Lipschitz continuous Hessian
(L2 < +∞), the Cubic Newton Method (1.4.9) needs

K = O
(√

L2D3
0

ε

)
(1.4.13)
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iterations to solve the problem up to ε-precision in terms of the functional
residual F (xK)− F ∗ ≤ ε [124], where

D0
def= sup

x

{
‖x− x∗‖ : F (x) ≤ F (x0)

}
.

The dependence on ε is much better than that in the global complexity
(1.3.12) of the Gradient Method. Estimate (1.4.13) follows from Theo-
rem 2.2.7 in Chapter 2 as a particular case p = 2.

1.5 Tensor Methods
Tensor methods is a natural generalization of the gradient and the second-
order methods to arbitrary order.

1.5.1 Basic Method
Let us present a basic variant of the regularized composite Tensor Method
of a fixed order p ≥ 1, for convex objective.

x0 ∈ domψ, k ≥ 0 :

xk+1 ∈ Argmin
y

{
Ωp(f, xk; y) + Hk‖y−xk‖p+1

(p+1)! + ψ(y)
}
,

(1.5.1)

where Ωp is the standard Taylor’s polynomial of order p, defined by (1.3.4).
For p = 1, this is the Gradient Method (1.3.10). When p = 2, this is the

Cubic Newton (1.4.9).
Unless f is a quadratic function (i.e. its third derivativeD3f is zero), the

third-order Taylor’s polynomial Ω3(f, x; y) is always nonconvex in y. This
is easy to see by considering just a one-dimensional polynomial of degree 3;
it has a stationary point which is not the global minimum and thus the
polynomial is nonconvex (see Figure 1.3).

When the regularization parameter is big enough (Hk ≥ Lp), it follows
from (1.3.5) that the model used in the Tensor Method is a global upper
approximation of the objective F (y). There is still no evidence that this
model is convex, though.

Making Hk a little bigger, it is possible to prove the following important
result [118], which is crucial for implementability of method (1.5.1). We
include its proof for completeness of our presentation.
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Figure 1.3: Third-order Taylor’s approximation of a convex function.

Theorem 1.5.1. Let
H ≥ pLp. (1.5.2)

Then for arbitrary x ∈ dom f the function

g(y) ≡ Ωp(f, x; y) + H‖y−x‖p+1

(p+1)!

is convex.

Proof. We may assume nontrivial case p ≥ 3. Then, the gradient of g is

∇g(y) = ∇Ωp(f, x; y) + H‖y−x‖p−1

p! B(y − x),

and the Hessian is

∇2g(y) = ∇2Ωp(f, x; y) + H‖y−x‖p−1

p! B + (p−1)H‖y−x‖p−3

p! C,

where C : E→ E∗ is a symmetric linear operator, defined by the equation

〈Ch1, h2〉 = 〈B(y − x), h1〉 · 〈B(y − x), h2〉, h1, h2 ∈ E.

In particular, we have 〈Ch, h〉 = 〈B(y − x), h〉2 ≥ 0, for all h ∈ E. Hence,

∇2g(y) � ∇2Ωp(f, x; y) + H‖y−x‖p−1

p! B

(1.3.7)
� ∇2f(y) +

(
H‖y−x‖p−1

p! − Lp‖y−x‖p−1

(p−1)!

)
B

(1.5.2)
� ∇2f(y) � 0,
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where the last inequality is due to convexity of f . Therefore, g is also
convex.

Due to this theorem, the regularized model is convex for any p ≥ 1 (see
Figure 1.4 for p = 3). Therefore, we can try to solve the subproblem by
using the tools of Linear Algebra and Convex Optimization. For p = 3,
efficient implementation of the Tensor Step was presented in [118]. We
discuss this result in the next section. It remains to be an open problem —
how to implement the Tensor Method when p ≥ 4.

Another interesting open question is how tight bound (1.5.2) is for the
regularization parameter, which ensures convexity of the model.

15 10 5 0 5 10 15
2

0

2

4

6

8

Third-order Taylor's polynomial
Regularized model

Figure 1.4: Regularization of third-order Taylor’s polynomial.

Assuming the p-th derivative of the smooth part is Lipschitz continuous
(Lp < +∞), algorithm (1.5.1) needs

K = O
([

LpD
p+1
0
ε

] 1
p
)

iterations to solve the problem up to ε-accuracy: F (xK)− F ∗ ≤ ε [6, 118].
We prove this complexity bound in Theorem 2.2.7 from Chapter 2. It is
clear that the dramatic improvement in the rate of convergence comes from
increasing difficulty in solving the subproblem.

Utilizing the notion of Estimating Sequences the rate of high-order Ten-
sor Methods can be accelerated, achieving the complexity [6, 118]:

O
([

LpD
p+1
0
ε

] 1
p+1
)
.
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It can be improved up to the level

O
([

LpD
p+1
0
ε

] 2
3p+1

)
,

by using a special line-search in each iteration [101, 54]. The latter rate was
shown to be the optimal [4, 118], when f ∈ Cp,p(E).

1.5.2 Implementation by Second-Order Oracle

For p = 3, an auxiliary problem in algorithm (1.5.1) at iteration k ≥ 0 is as
follows:

min
h∈E

{
〈∇f(xk), h〉+ 1

2 〈∇
2f(xk)h, h〉+ 1

6D
3f(xk)[h]3 + L3‖h‖4

4

}
,

where we assume for simplicity that the composite part is absent: ψ(x) ≡ 0,
and the regularization parameter is being fixed: Hk ≡ 6L3. Note that this
is a bigger value than in the bound (1.5.2); it is needed for analysing the
inexact steps.

We present a procedure proposed in [122] for computing the next iterate
xk+1 of the third-order Tensor Method by solving this auxiliary problem —
algorithm (1.5.3).

Every iteration of the procedure is basically the Gradient Step for the
auxiliary problem, but with a specific choice of prox-function (see [152, 7, 95]
for the notion of relative smoothness), formed by the second derivative of
the initial objective and augmented by the fourth power of the Euclidean
norm:

d(h) = 1
2 〈∇

2f(xk)h, h〉+ L3
4 ‖h‖

4,

while d(h) = 1
2‖h‖

2 is used in the standard variant (1.3.10) of the Gradient
Method. The arithmetical complexity of such iteration is comparable to
that one of the Cubic Newton, and the similar techniques can be used to
perform it (see the corresponding discussion in Section 1.4.3).

Additionally, in each step we approximate action of the third derivative
D3f(x)[h]2 by a finite difference of the gradients:

D3f(x)[h]2 ≈ 1
τ2

[
∇f(x+ τh) +∇f(x− τh)− 2∇f(x)

]
,

for sufficiently small τ > 0.
Thus we need an access only to the second-order local oracle for f . The
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Hessian is computed only once and the number of the gradient computations
is proportional to the total number of iterations of the process.

Computing Inexact Tensor Step of Order p = 3.

Initialization (input: xk). Choose δ > 0. Set h0 = 0 ∈ E,

γ = 2 +
√

2, τ = 3δ
8γ‖∇f(xk)‖∗ , R = 2

[
γ
L3
‖∇f(xk)‖∗

] 1
3 .

Iteration i ≥ 0.

1: Compute an approximate gradient:

gi = ∇f(xk) +∇2f(xk)hi

+ 1
2τ2

[
∇f(xk + τhi) +∇f(xk − τhi)− 2∇f(xk)

]
.

2: If ‖gi‖∗ ≤ 1
6‖∇f(xk + hi)‖∗ − δ, then

return xk+1 = xk + hi.

3: Set ĝi = gi − γ∇2f(xk)hi − γL3‖hi‖3Bhi.

4: Compute the next iterate:

hi+1 = argmin
h:‖h‖≤R

{
〈ĝi, h〉+ γ

2 〈∇
2f(xk)h, h〉+ γL3‖h‖4

4

}
.

(1.5.3)

Let us assume
f ∈ C4,1(E) ∩ C4,3(E), (1.5.4)

so f is 4-times continuously differentiable and both its first and third deriva-
tives are Lipschitz (L1 < +∞ and L3 < +∞). One can show that L2 ≤√

2L1L3 (see Lemma 4 in [122]), so it holds:

C4,1(E) ∩ C4,3(E) ⊆ C4,2(E) ⊆ C2,2(E).

Then, for a particular value of the tolerance parameter,

δ ≈ ε3/2
g

‖∇f(xk)‖1/2
∗ +‖∇2f(xk)‖3/2/L

1/2
3
,
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where εg is a lower bound for the norm of the gradients, algorithm (1.5.3)
needs O

(
log 1

εg

)
iterations to return xk+1, which is a good approximation

of the third-order Tensor Step [122], that provides us with the global con-
vergence guarantees. Hence, we obtain formally the second-order schemes
with complexities

K = Õ
(
ε−

1
3
)

and K = Õ
(
ε−

1
4
)

oracle calls to find a point xK s.t. f(xK) − f∗ ≤ ε, for the basic and for
the accelerated Tensor Methods respectively. Later on, the complexity of
optimization methods on the functional class (1.5.4) was improved up to

K = Õ
(
ε−

1
5
)

second-order oracle calls [121, 76]. This is better than the known lower
bound Ω

(
ε−

2
7
)
obtained for the second-order methods on f ∈ C2,2(E) [4].

Of course, such an acceleration is possible due to a finer specification (1.5.4)
of the problem class.

1.6 Arithmetical Complexity of Oracles
Let us discuss a relationship between analytical and arithmetical complex-
ities of optimization methods.

In this thesis, we are mainly interested in analytical complexity, origi-
nated in [102]. This is a total number of oracle calls for an optimization
method, that is required to solve arbitrary problem from a given problem
class. The first-order oracle returns the function value and the gradient
computed at the given point,

O1 : x 7→ (f(x),∇f(x)),

while the second-order oracle reveals additional information, which is the
Hessian of the objective,

O2 : x 7→ (f(x),∇f(x),∇2f(x)).

Analogously, one can define the local oracle of degree p ≥ 1 that returns all
the derivatives up to the fixed order,

Op : x 7→ (f(x), . . . , Dpf(x)).

37



Chapter 1. Introduction

For the most iterative methods that we consider, the number of iterations
is always proportional to the number of oracle calls. Hence, we can usually
estimate arithmetical complexity as a product of the analytical complexity
and the cost of each iteration. The cost of one iteration consists of the
number of arithmetical operations required to implement the oracle call, and
some possible additional operations to solve an auxiliary problem. Thus,
we come to the following intuitive formula:

Arithmetical Complexity = Analytical Complexity
∗ (Oracle Call + Auxiliary Computations).

It is clear that for the oracles of different order, the cost of their call
may be quite different. At the same time, it strictly depends on the tar-
get objective and the way we represent it. Let us consider some typical
examples.

1. Separable Optimization. In applications related to Machine Learning
and Statistics [53, 146], very often we have the following structural
representation of the objective:

f(x) = 1
M

M∑
i=1

φ(〈ai, x〉), x ∈ Rn,

where ai ∈ Rn, 1 ≤ i ≤M are given data vectors, and φ : R→ R is a
fixed convex loss function. In this case, we have

∇f(x) = AT s(x),

where A ∈ RM×n is the matrix whose rows are formed by vectors
a1, . . . , aM , and s(x) ∈ RM is a vector,[

s(x)
](i) def= 1

M φ′(〈ai, x〉), 1 ≤ i ≤M.

Assume that φ and its derivatives are computable in O(1) operations.
Then the most difficult part is the computation of matrix-vector prod-
ucts Ax and AT s(x), for the given x, which requires O(Mn) arithmeti-
cal operations in general.

For the Hessian matrix, we have

∇2f(x) = AT d(x)A ∈ Rn×n,
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where d(x) ∈ RM×M is a diagonal matrix,[
d(x)

](i,i) def= 1
M φ′′(〈ai, x〉), 1 ≤ i ≤M.

Hence, the second-order oracle call already costs O(Mn2) arithmetical
operations, if using a trivial matrix multiplication algorithm.

For any p ≥ 1 and for h1, . . . , hp ∈ Rn, we have

Dpf(x)[h1, . . . , hp] = 1
M

M∑
i=1

φ(p)(〈ai, x〉)
p∏
j=1
〈ai, hj〉.

The computation of the directional derivative of order p ≥ 1 along
some fixed directions requires only O(pMn) arithmetical operations,
while it costs O(pMnp) operations and O(np) amount of memory to
compute and keep the whole tensor, which is enormous for big n and
p. Thus it is important that we can implement third-order tensor
methods by using only second-order oracle calls (see Section 1.5.2).

2. Log-Sum-Exp. Let us consider the function from Example 1.3.5:

f(x) = log
(

m∑
i=1

e〈ai,x〉
)
, x ∈ Rn,

where ai ∈ Rn, 1 ≤ i ≤ m are given vectors. Denoting by A ∈ Rm×n

the matrix whose rows are formed by vectors a1, . . . , am, and using an
auxiliary vector π(x) ∈ Rm,

[
π(x)

](i) def= e〈ai,x〉 ·
(

m∑
j=1

e〈aj ,x〉
)−1

, 1 ≤ i ≤ m,

we have the following expression for the gradient:

∇f(x) = ATπ(x),

and for the Hessian:

∇2f(x) = AT
(
diag (π(x))− π(x)π(x)T

)
A.

It costs O(mn) and O(mn2) arithmetical operations to call the first-
order and second-order oracles, respectively.

Note that in the case of data sparsity, these complexity estimates can
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be improved by working only with nonzero elements.
3. Approximations by finite differences. Finally, let us discuss a general

approach for computation of the Hessian, that is based on the Taylor
formula. We have already seen this technique in Section 1.5.2, where
the action of the third derivative was approximated by the gradients.
For a fixed point x ∈ E and arbitrary direction h ∈ E, we know the
following approximation of the Hessian-vector product:

∇2f(x)h ≈ 1
τ

[
∇f(x+ τh)−∇f(x)

]
,

where τ > 0 is a small parameter. Hence, we can approximate the
action of the Hessian to arbitrary vector by using only two gradient
computations.
Now, let us assume that E = Rn and e1, . . . , en ∈ Rn is the standard
basis. Then we can build the matrix Ax,τ ∈ Rn×n whose rows are the
approximations of ∇2f(x)ei, 1 ≤ i ≤ n, i.e.

A
(i,j)
x,τ

def= 1
τ

[
∇f(x+ τei)−∇f(x)

](j)
, 1 ≤ i, j ≤ n.

After symmetrization, we get a symmetric approximation to the Hes-
sian matrix:

∇2f(x) ≈ 1
2
(
Ax,τ +ATx,τ

)
.

Forming this matrix requires n+ 1 gradient computations. Therefore,
the second-order oracle can be implemented by n+ 1 calls of the first-
order one. However, this approach works only if the target accuracy
for our problem is not very high, due to the limits of machine precision.
It is clear that we may also obtain approximations of the gradients
and the Hessians by using only the function values, which results in
zeroth-order or derivative-free methods.
Finite differencing is discussed in more details in [127]. Its applications
to the cubically regularized Newton method were considered in [24].
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Minimizing Uniformly
Convex Functions

Let us start with the definition of uniform convexity. Then we list some
basic properties related to this notion.

We say that function F is uniformly convex of degree q ≥ 2 on a convex
set Q ⊆ domF if for some constant σ > 0 it satisfies inequality

F (y) ≥ F (x) + 〈F ′(x), y − x〉+ σ‖y−x‖q
q , (2.0.1)

for all x, y ∈ Q and for all subgradients F ′(x) ∈ ∂F (x). Uniformly convex
functions of degree q = 2 are known as strongly convex.

The following convenient condition is sufficient for function F to be
uniformly convex on a convex set Q.

Lemma 2.0.1. If for all x, y ∈ Q and for all F ′(x) ∈ ∂F (x), F ′(y) ∈ ∂F (y)
it holds

〈F ′(x)− F ′(y), x− y〉 ≥ σ‖y − x‖q, (2.0.2)

then function F is uniformly convex of degree q on set Q with parameter σ.

Proof. Indeed, for a particular selection of subgradients, we have by the
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Newton-Leibniz formula:

F (y)− F (x)− 〈F ′(x), y − x〉

=
1∫
0
〈F ′(x+ τ(y − x))− F ′(x), y − x〉dτ

(2.0.2)
≥

1∫
0
στ q−1‖y − x‖qdτ = σ‖y−x‖q

q .

The main source of uniformly convex functions for us consists in taking
a power of the Euclidean norm (see Example 2.1.4 in Section 2.1.1).

From now on, considering the composite optimization problem:

F ∗
def= min

x

{
F (x) = f(x) + ψ(x)

}
,

we set Q := domψ ⊆ dom f . The optimum x∗ always exists for F being
uniformly convex and closed. From (2.0.1) it follows that the optimum is
unique, since 0 ∈ ∂F (x∗).

A useful consequence of the uniform convexity is the following upper
bound for the functional residual.

Lemma 2.0.2. For every x ∈ domψ and for all F ′(x) ∈ ∂F (x) it holds

F (x)− F ∗ ≤ q−1
q

( 1
σ

) 1
q−1 ‖F ′(x)‖

q
q−1
∗ . (2.0.3)

Proof. Let us minimize the left- and the right-hand sides of (2.0.1) with
respect to y independently:

F ∗ = min
y∈domψ

F (y)
(2.0.1)
≥ min

y∈E

{
F (x) + 〈F ′(x), y − x〉+ σ‖y−x‖q

q

}
= F (x)− q−1

q

( 1
σ

) 1
q−1 ‖F ′(x)‖

q
q−1
∗ ,

and this is (2.0.3).
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2.1. Second-Order Global Nondegeneracy

2.1 Second-Order Global Nondegeneracy
We have seen that for general convex functions with Lipschitz continuous
Hessian, the Cubic Newton has a better rate of convergence than that of the
Gradient Method for convex functions with Lipschitz continuous gradient
(see the dependence on ε in the complexity estimates (1.4.13) and (1.3.12),
respectively). At the same time, it is known that the first-order methods
achieve the fast linear rate, when the objective is strongly convex. The
corresponding complexity of the Gradient Method is (1.3.13).

Despite a number of nice properties, global complexity bounds of the
cubically regularized Newton Method for the cases of strongly convex and
uniformly convex objective are not still fully investigated, as well as the
notion of second-order non-degeneracy (see also the discussion in Section 5
in [111]). We are going to address this question in the current part of the
thesis.

In Section 2.1.1 we consider the class of twice-differentiable uniformly
convex functions with Hölder continuous Hessian. We introduce the notion
of the condition number ων of a certain degree ν ∈ [0, 1] and present some
basic examples.

In Section 2.1.2 we describe a general regularized Newton scheme and
show the linear rate of convergence for this method on the class of uniformly
convex functions with a known degree ν ∈ [0, 1] of nondegeneracy. Then
we introduce the adaptive cubically regularized Newton method and collect
useful inequalities and properties, which are related to this algorithm.

In Section 2.1.3 we study global iteration complexity of the cubically
regularized Newton method on the classes of uniformly convex functions
with Hölder continuous Hessian. We show that for nondegeneracy of any
degree ν ∈ [0, 1], which is formalized by the condition ων < +∞, the algo-
rithm automatically achieves the linear rate of convergence with the value
ων being the main complexity factor.

Finally, in Section 2.1.4 we compare our complexity bounds with the
known bounds for other methods and discuss the results. In particular, we
justify an intuitively plausible (but quite a delayed) result that the global
complexity of the cubically regularized Newton method is always better
than that of the Gradient Method on the class of strongly convex functions
with uniformly bounded second derivative.
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2.1.1 Uniformly Convex Functions with Hölder Con-
tinuous Hessian

Let us assume that the smooth part f(·) of the composite problem,

min
x

{
F (x) = f(x) + ψ(x)

}
,

is uniformly convex. It is reasonable to define the best possible constant of
uniform convexity σ in inequality (2.0.2) for a certain degree q. This leads
us to a system of constants:

σq
def= inf

x,y ∈ domψ
x 6=y

〈∇f(x)−∇f(y),x−y〉
‖x−y‖q , q ≥ 2. (2.1.1)

We prefer to use inequality (2.0.2) for the definition of σq, instead of (2.0.1),
because of its symmetry in x and y. Note that the value σq depends on the
domain of ψ. However, we omit this dependence in our notation since it is
always clear from the context.

It is easy to see that σq as a univariate function in q is log-concave.
Thus, for all q2 > q1 ≥ 2 we have:

σq ≥
(
σq1

) q2−q
q2−q1 ·

(
σq2

) q−q1
q2−q1 , q ∈ [q1, q2]. (2.1.2)

For a twice-differentiable function f , we say that it has Hölder contin-
uous Hessian of degree ν ∈ [0, 1] on a convex set Q ⊆ dom f , if for some
constant H ≥ 0 , it holds:

‖∇2f(x)−∇2f(y)‖ ≤ H‖x− y‖ν , ∀x, y ∈ Q. (2.1.3)

Two simple consequences of (2.1.3) are as follows:

‖∇f(y)−∇f(x)−∇2f(x)(y − x)‖∗ ≤ H‖x−y‖1+ν

1+ν , (2.1.4)

|f(y)− Ω2(f, x; y)| ≤ H‖x−y‖2+ν

(1+ν)(2+ν) , (2.1.5)

where Ω2(f, x; y) is the quadratic model of f at the point x:

Ω2(f, x; y) def= f(x) + 〈∇f(x), y − x〉+ 1
2 〈∇

2f(x)(y − x), y − x〉.

In order to characterize the level of smoothness of function f on the set
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Q := domψ, let us define the system of Hölder constants (see [60]):

Hν
def= sup

x,y∈domψ
x6=y

‖∇2f(x)−∇2f(y)‖
‖x−y‖ν , ν ∈ [0, 1]. (2.1.6)

We allow Hν to be equal to +∞ for some ν. Note that Hν as a function in
ν is log-convex. Thus, any 0 ≤ ν1 < ν2 ≤ 1 such that Hνi < +∞, i = 1, 2,
provide us with the following upper bounds for the whole interval:

Hν ≤
(
Hν1

) ν2−ν
ν2−ν1 ·

(
Hν2

) ν−ν1
ν2−ν1 , ν ∈ [ν1, ν2]. (2.1.7)

If for some specific ν ∈ [0, 1] we have Hν = 0, this implies that ∇2f(x) =
∇2f(y) for all x, y ∈ domψ. In this case restriction f |domψ is a quadratic
function and we conclude that Hν = 0 for all ν ∈ [0, 1]. At the same time,
having two points x, y ∈ domψ with 0 < ‖x − y‖ ≤ 1, we get a simple
uniform lower bound for all constants Hν :

Hν ≥ ‖∇2f(x)−∇2f(y)‖, ν ∈ [0, 1].

Let us give an example of a function, that has a Hölder continuous
Hessian for all ν ∈ [0, 1].

Example 2.1.1. For a given ai ∈ E∗, 1 ≤ i ≤ m, consider the function:

f(x) = log
(

m∑
i=1

e〈ai,x〉
)
, x ∈ E,

and fix the Euclidean norm ‖x‖ = 〈Bx, x〉1/2, with operatorB :=
∑m
i=1 aia

∗
i .

Without loss of generality, we assume that B � 0. From Example 1.3.5, we
know that the corresponding Lipschitz constants are: L1 = 1, and L2 = 2.

Hence,
H0 ≤ 1, H1 ≤ 2.

Therefore, by (2.1.7) we get, for any ν ∈ [0, 1]

Hν ≤ 2ν .

Let us imagine now that we want to describe the iteration complexity
of some method, which solves the composite optimization problem up to an
absolute accuracy ε > 0 in the function value. We assume that the smooth
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part f of the objective is uniformly convex and has a Hölder continuous
Hessian. Which degrees q and ν should be used in our analysis? Suppose
that, for the number of calls of the oracle, we are interested in obtaining a
polynomial-time bound of the form:

O
(

(Hν)α · (σq)β · log F (x0)−F∗
ε

)
, α, β 6= 0.

Denote by [x] an intuitive physical dimension of variable x ∈ E, and by [f ]
the physical dimension of the value f(x). Then, we have [∇f(x)] = [f ]/[x]
and [∇2f(x)] = [f ]/[x]2. This gives us

[Hν ] = [f ]
[x]2+ν , [σq] = [f ]

[x]q , [ (Hν)α · (σq)β ] = [f ]α+β

[x]α(2+ν)+βq .

While x and f(x) can be measured in arbitrary physical quantities, the
value "number of iterations" cannot have physical dimension. This leads to
the following relations:

α+ β = 0 and α(2 + ν) + βq = 0.

Therefore, despite to the fact that our function can belong to several prob-
lem classes simultaneously, from the physical point of view only one option
is available:

q = 2 + ν

Hence, for a twice-differentiable convex function f with

inf
ν∈[0,1]

Hν > 0,

we can define only one meaningful condition number of degree ν ∈ [0, 1]:

ων
def= Hν

σ2+ν
(2.1.8)

If for some particular ν we have σ2+ν = 0 or Hν = +∞ then by our
definition: ων

def= +∞.
It will be shown that the condition number ων serves as a main factor in

the global iteration complexity bounds for the regularized Newton method
as applied to the composite problem. Let us prove that this number is
bounded from below.

Lemma 2.1.2. Let infν∈[0,1]Hν > 0 and therefore the condition number be
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well defined. Then,

ων ≥
(

1
1+ν + inf

x,y∈domψ
x 6=y

‖∇2f(x)‖
‖∇2f(y)−∇2f(x)‖

)−1
, ∀ν ∈ [0, 1]. (2.1.9)

In the case when domψ is unbounded: supx∈domψ ‖x‖ = +∞, we have

ων ≥ 1 + ν, ∀ν ∈ (0, 1]. (2.1.10)

Proof. Indeed, for any x, y ∈ domψ, x 6= y, we have:

σ2+ν
(2.1.1)
≤ 〈∇f(y)−∇f(x),y−x〉

‖y−x‖2+ν

= 〈∇f(y)−∇f(x)−∇2f(x)(y−x),y−x〉
‖y−x‖2+ν + 〈∇2f(x)(y−x),y−x〉

‖y−x‖2+ν

(2.1.4)
≤ Hν

1+ν + ‖∇2f(x)‖
‖y−x‖ν .

Now, dividing both sides of this inequality by σ2+ν (we assume it is positive,
the other case is trivial), we get inequality (2.1.9) from the definition of
Hν (2.1.6). Inequality (2.1.10) can be obtained by taking the limit ‖y‖ →
+∞.

From inequalities (2.1.2) and (2.1.7) we can get the following upper
bound:

ων ≤
(
ων1

) ν2−ν
ν2−ν1 ·

(
ων2

) ν−ν1
ν2−ν1 , ∀ν ∈ [ν1, ν2],

where 0 ≤ ν1 < ν2 ≤ 1. However, it turns out that in unbounded case we
can have a meaningful condition number ων only for a single degree.

Lemma 2.1.3. Let domψ be unbounded: supx∈domψ ‖x‖ = +∞. Assume
that for a fixed ν ∈ [0, 1] we have ων < +∞. Then,

ωα = +∞ for all α ∈ [0, 1] \ {ν}.

Proof. Consider firstly the case: α > ν. From the condition ων < +∞ we
conclude that Hν < +∞. Then, for any x, y ∈ domψ we have:

σ2+α‖y−x‖2+α

2+α ≤ f(y)− f(x)− 〈∇f(x), y − x〉

(2.1.5)
≤ 1

2 〈∇
2f(x)(y − x), (y − x)〉+ Hν‖y−x‖2+ν

(1+ν)(2+ν) .
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Dividing both sides of this inequality by ‖y−x‖2+α and letting ‖x‖ → +∞,
we get σ2+ν = 0. Therefore, ωα = +∞. For the second case, α < ν,
we cannot have ωα < +∞, since the previous reasoning results in ων =
+∞.

Let us look now at an important example of a uniformly convex func-
tion with a Hölder continuous Hessian. It is convenient to start with some
properties of powers of Euclidean norm.

Lemma 2.1.4. For fixed real p ≥ 1, consider the following function:

fp(x) = 1
p‖x‖

p, x ∈ E.

1. For p ≥ 2, function fp(·) is uniformly convex of degree p:1

〈∇fp(x)−∇fp(y), x− y〉 ≥ 22−p‖x− y‖p, ∀x, y ∈ E. (2.1.11)

2. If 1 ≤ p ≤ 2, then function fp(·) has a ν-Hölder continuous gradient with
ν = p− 1:

‖∇fp(x)−∇fp(y)‖∗ ≤ 21−ν‖x− y‖ν , ∀x, y ∈ E. (2.1.12)

Proof. Firstly, recall two useful inequalities, which are valid for all a, b ≥ 0:

|aα − bα| ≤ |a− b|α, when 0 ≤ α ≤ 1, (2.1.13)

|aα − bα| ≥ |a− b|α, when α ≥ 1. (2.1.14)

Let us fix arbitrary x, y ∈ E. The left hand side of inequality (2.1.11)
equals

〈‖x‖p−2Bx−‖y‖p−2By, x− y〉 = ‖x‖p + ‖y‖p−〈Bx, y〉(‖x‖p−2 + ‖y‖p−2),

and we need to verify that it is bigger than 22−p[‖x‖2 + ‖y‖2− 2〈Bx, y〉
] p

2 .

The case x = 0 or y = 0 is trivial. Therefore, assume x 6= 0 and y 6= 0.
Denoting τ := ‖y‖

‖x‖ , r := 〈Bx,y〉
‖x‖·‖y‖ , we have the following statement to prove:

1 + τp ≥ rτ(1 + τp−2) + 22−p[1 + τ2 − 2rτ
] p

2 , τ > 0, |r| ≤ 1.

Since the function in the right-hand side is convex in r, we need to check
only two marginal cases:

1For the integer values of p, this inequality was proved in [111].
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1. r = 1 : 1 + τp ≥ τ(1 + τp−2) + 22−p|1− τ |p, which is equivalent to
(1− τ)(1− τp−1) ≥ 22−p|1− τ |p. This is true by (2.1.14).

2. r = −1 : 1+τp ≥ −τ(1+τp−2)+22−p(1+τ)p, which is equivalent
to (1 + τp−1) ≥ 22−p(1 + τ)p−1. This is true in view of the convexity
of function τp−1 for τ ≥ 0.

Thus we have proved (2.1.11). Let us prove the second statement. Consider
the function f̂q(s) = 1

q‖s‖
q
∗, s ∈ E∗, with q = p

p−1 ≥ 2. In view of our first
statement, we have, for all s1, s2 ∈ E∗

〈s1 − s2,∇f̂q(s1)−∇f̂q(s2)〉 ≥
( 1

2
)q−2 ‖s1 − s2‖q∗. (2.1.15)

For arbitrary x1, x2 ∈ E, define si = ∇fp(xi) = Bxi
‖xi‖2−p , i = 1, 2. Then

‖si‖∗ = ‖xi‖p−1, and consequently,

xi = ‖xi‖2−pB−1si = ‖si‖
2−p
p−1
∗ B−1si = ∇f̂q(si).

Therefore, by substituting these vectors in (2.1.15), we get,( 1
2
)q−2 ‖∇fp(x1)−∇fp(x2)‖q∗ ≤ 〈∇fp(x1)−∇fp(x2), x1 − x2〉.

Thus, ‖∇fp(x1)−∇fp(x2)‖∗ ≤ 2
q−2
q−1 ‖x1 − x2‖

1
q−1 . It remains to note that

1
q−1 = p− 1 = ν.

Example 2.1.5. For real q ≥ 2 and an arbitrary x0 ∈ E, consider the
following function:

f(x) = 1
q‖x− x0‖q = fq(x− x0), x ∈ E.

Then σq =
( 1

2
)q−2. Moreover, if q = 2 + ν for some ν ∈ (0, 1], then it

holds,
Hν ≤ (1 + ν)21−ν ,

and Hα = +∞, for all α ∈ [0, 1] \ {ν}. Therefore, in this case we have
ων ≤ 2(1 + ν), and ωα = +∞ for all α ∈ [0, 1] \ {ν}.

Proof. Let us take an arbitrary x 6= 0 and set y := −x. Then,

〈∇f(x)−∇f(y), y − x〉 = 〈‖x‖q−2Bx+ ‖x‖q−2Bx, 2x〉 = 4‖x‖q.
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On the other hand, ‖y − x‖q = 2q‖x‖q. Therefore, σq
(2.1.1)
≤ 22−q, and

(2.1.11) tells us that this inequality is satisfied as equality.
Let us prove now that Hν ≤ (1 + ν)21−ν for q = 2 + ν with some

ν ∈ (0, 1]. This is

‖∇2f(x)−∇2f(y)‖ ≤ (1 + ν)21−ν‖x− y‖ν , ∀x, y ∈ E. (2.1.16)

The corresponding Hessians can be represented as follows:

∇2f(x) = ‖x‖νB + νBxx∗B
‖x‖2−ν , x ∈ E \ {0}, ∇2f(0) = 0.

For the case x = y = 0, inequality (2.1.16) is trivial. Assume now that
x 6= 0. If 0 ∈ [x, y], then y = −βx for some β ≥ 0 and we have:

‖∇2f(x)−∇2f(−βx)‖ ≤ |1− βν |(1 + ν)‖x‖ν

≤ (1 + β)ν(1 + ν)21−ν‖x‖ν

= (1 + ν)21−ν‖x− y‖ν ,

which is (2.1.16). Let 0 /∈ [x, y]. For an arbitrary fixed direction h ∈ E, we
get: ∣∣〈(∇2f(x)−∇2f(y))h, h

〉∣∣
=
∣∣∣(‖x‖ν − ‖y‖ν) · ‖h‖2 + ν ·

(
〈Bx,h〉2
‖x‖2−ν − 〈By,h〉

2

‖y‖2−ν

)∣∣∣.
Consider the points u = Bx

‖x‖1−ν = ∇fs(x) and v = By
‖y‖1−ν = ∇fs(y) with

s := 1 + ν. Then,

‖x‖ν = ‖u‖∗, 〈Bx,h〉2
‖x‖2−ν = 〈u,h〉2

‖u‖∗ and ‖y‖ν = ‖v‖∗, 〈By,h〉2
‖y‖2−ν = 〈v,h〉2

‖v‖∗ .

Therefore,∣∣〈(∇2f(x)−∇2f(y))h, h
〉∣∣

=
∣∣∣(‖u‖∗ − ‖v‖∗) · ‖h‖2 + ν ·

(
〈u,h〉2
‖u‖∗ −

〈v,h〉2
‖v‖∗

)∣∣∣. (2.1.17)

Let us estimate the right-hand side of (2.1.17) from above. Consider a
continuously differentiable univariate function:

φ(τ) := ‖u(τ)‖∗ · ‖h‖2 + ν · 〈u(τ),h〉2
‖u(τ)‖∗ , u(τ) := u+ τ(v − u), τ ∈ [0, 1].
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Note that

φ′(τ) = 〈u(τ),B−1(v−u)〉
‖u(τ)‖∗ · ‖h‖2 + 2ν〈u(τ),h〉〈v−u,h〉

‖u(τ)‖∗

− ν〈u(τ),h〉2〈u(τ),B−1(v−u)〉
‖u(τ)‖3

∗

= 〈u(τ),B−1(v−u)〉
‖u(τ)‖∗ ·

(
‖h‖2 − ν〈u(τ),h〉2

‖u(τ)‖2
∗

)
︸ ︷︷ ︸

≥0

+ 2ν〈u(τ),h〉〈v−u,h〉
‖u(τ)‖∗ .

Denote γ := 〈u(τ),h〉
‖u(τ)‖∗·‖h‖ ∈ [−1, 1]. Then,∣∣φ′(τ)

∣∣ ≤ ‖v − u‖∗ · ‖h‖2 · (1− νγ2 + 2ν|γ|
)
≤ (1 + ν) · ‖v − u‖∗ · ‖h‖2.

Thus, we have∣∣〈(∇2f(x)−∇2f(y))h, h
〉∣∣ = |φ(1)− φ(0)|

≤ (1 + ν) · ‖v − u‖∗ · ‖h‖2.
(2.1.18)

It remains to use the definition of u and v and apply inequality (2.1.12)
with p = s. Thus, we have proved, that for q = 2 + ν the Hessian of f
is Hölder continuous of degree ν. At the same time, taking y = 0, we get
‖∇2f(x) − ∇2f(y)‖ = ‖∇2f(x)‖ = (1 + ν)‖x‖ν . These values cannot be
uniformly bounded in x ∈ E by any multiple of ‖x‖α with α 6= ν. So, the
Hessian of f is not Hölder continuous for any degree different from 2+ν.

Remark 2.1.6. Inequalities (2.1.11) and (2.1.12) have the following sym-
metric consequences:

p ≥ 2 ⇒ ‖∇fp(x)−∇fp(y)‖∗ ≥ 22−p‖x− y‖p−1,

p ≤ 2 ⇒ ‖∇fp(x)−∇fp(y)‖∗ ≤ 22−p‖x− y‖p−1,

which are valid for all x, y ∈ E.

2.1.2 Regularized Newton Method
First, let us consider the case when we know that for a specific ν ∈ [0, 1]
function f has a Hölder continuous Hessian: Hν < +∞. Then, from (2.1.5),
we have the global upper bound for the objective function, for all x, y ∈
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domψ:

F (y) ≤ Mν,H(x; y) def= Ω2(f, x; y) + H‖y−x‖2+ν

(1+ν)(2+ν) + ψ(y),

when the regularization parameter is large enough: H ≥ Hν . Thus, it is
natural to employ the minimum of a regularized quadratic model:

Tν,H(x) def= argmin
y

Mν,H(x; y), M∗ν,H(x) def= min
y
Mν,H(x; y),

and define the following general iteration process [60]:

x0 ∈ domψ, xk+1 = Tν,Hk(xk), k ≥ 0 (2.1.19)

where the value Hk is chosen either to be a constant from the interval
(0, 2Hν ] or by some adaptive procedure.

For the class of uniformly convex functions of degree q = 2 + ν, we can
justify the following global convergence result for this process.

Theorem 2.1.7. Assume that for some ν ∈ [0, 1] we have 0 < Hν < +∞
and σ2+ν > 0. Let the coefficients {Hk}k≥0 in process (2.1.19) satisfy the
following conditions:

0 ≤ Hk ≤ βHν , F (xk+1) ≤ M∗ν,Hk(xk), k ≥ 0, (2.1.20)

with some constant β ≥ 0. Then for the sequence {xk}k≥0 generated by the
process we have

F (xk+1)− F ∗

≤
(

1 − 1+ν
2+ν ·min

{
(1+ν)

ων(1+β)(2+ν) , 1
} 1

1+ν
)

(F (xk)− F ∗) .
(2.1.21)

Thus, the rate of convergence is linear and for reaching the gap

F (xK)− F ∗ ≤ ε

it is enough to perform

K =
⌈ 2+ν

1+ν ·max
{ων(1+β)(2+ν)

(1+ν) , 1
} 1

1+ν log F (x0)−F∗
ε

⌉
iterations.

52



2.1. Second-Order Global Nondegeneracy

Proof. Let us fix an arbitrary k ≥ 0 and consider the progress achieved at
one step of the method. For any y ∈ domψ, we have

F (xk+1)
(2.1.20)
≤ M∗ν,Hk(xk) ≤ Ω2(f, xk; y) + Hk‖y−xk‖2+ν

(1+ν)(2+ν) + ψ(y)

(2.1.5)
≤ F (y) + (Hk+Hν)‖y−xk‖2+ν

(1+ν)(2+ν)

(2.1.20)
≤ F (y) + (1+β)Hν‖y−xk‖2+ν

(1+ν)(2+ν) .

Now, define y = αx∗ + (1− α)xk, with α ∈ [0, 1]. Hence, we obtain

F (xk+1) ≤ F (xk)− α (F (xk)− F ∗) + α2+ν (1+β)Hν‖xk−x∗‖2+ν

(1+ν)(2+ν) ,

Then, taking into account uniform convexity (2.0.1), we get

F (xk+1) ≤ F (xk)−
(
α− α2+ν (1+β)Hν

(1+ν)σ2+ν

)
(F (xk)− F ∗) .

The minimum of the right-hand side is attained at

α∗ = min
{ (1+ν)
ων(2+ν)(1+β) , 1

} 1
1+ν .

Plugging this value into the bound above, we get inequality (2.1.21).
Unfortunately, in practice it is difficult to decide on an appropriate value

of ν ∈ [0, 1] with Hν < +∞. Hence, it is interesting to develop universal
methods that are not based on some particular parameters. Recently, it
was shown [60], that one good choice for such universal scheme is the Cubic
Newton. This is actually the process (2.1.19) with the fixed parameter
ν = 1.

From now on, we omit the unnecessary index:

MH(x; y) def= M1,H(x; y) ≡ Ω2(f, x; y) + H‖y−x‖3

6 + ψ(y),

TH(x) def= T1,H(x) ≡ argmin
y

M1,H(x; y),

and
M∗H(x) def= M∗1,H(x) ≡ MH(x;TH(x)).
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The adaptive scheme of our method with dynamic estimation of the
constant H is as follows.

Adaptive Cubic Regularization of Newton Method

Initialization. Choose x0 ∈ domψ, H0 > 0.

Iteration k ≥ 0.

1: Find the minimal integer ik ≥ 0 such that

F (THk2ik (xk)) ≤M∗
Hk2ik (xk).

2: Perform the Cubic Step: xk+1 = THk2ik (xk).

3: Set Hk+1 := 1
2Hk2ik .

(2.1.22)

We present now the main properties of the composite Cubic Newton
step x 7→ TH(x). We start by denoting

rH(x) def= ‖TH(x)− x‖.

Since point TH(x) is a minimum of the strictly convex function MH(x; ·), it
satisfies the following first-order optimality condition, for all y ∈ domψ:〈

∇f(x) +∇2f(x)(TH(x)− x)

+ HrH(x)
2 B(TH(x)− x), y − TH(x)

〉
+ ψ(y) ≥ ψ(TH(x)).

(2.1.23)

In other words, the vector

ψ′(TH(x)) def= −∇f(x)−∇2f(x)(TH(x)− x)− HrH(x)
2 B(TH(x)− x)

belongs to the subdifferential of ψ:

ψ′(TH(x)) ∈ ∂ψ(TH(x)). (2.1.24)

54



2.1. Second-Order Global Nondegeneracy

We have discussed computation of the point T = TH(x), satisfying condition
(2.1.24) in Section 1.4.9. Arithmetical complexity of such a procedure is
usually similar to that for the standard Newton step.

Plugging into (2.1.23) y := x ∈ domψ, we get:

〈∇f(x), x− TH(x)〉 ≥ 〈∇2f(x)(TH(x)− x), TH(x)− x〉

+ Hr3
H(x)
2 + ψ(TH(x))− ψ(x).

(2.1.25)

Thus, we obtain the following bound for the minimal value M∗H(x) of the
cubic model:

M∗H(x)
(2.1.25)
≤ f(x)− 1

2 〈∇
2f(x)(TH(x)− x), TH(x)− x〉

− Hr3
H(x)
3 + ψ(x)

= F (x)− 1
2 〈∇

2f(x)(TH(x)− x), TH(x)− x〉

− Hr3
H(x)
3 .

(2.1.26)

If for some value ν ∈ [0, 1] the Hessian is Hölder continuous: Hν < +∞,
then by (2.1.4) and (2.1.24) we get for the subgradient at new point,

F ′(TH(x)) def= ∇f(TH(x)) + ψ′(TH(x)),

the following bound:

‖F ′(TH(x))‖∗

≤ ‖∇f(TH(x))−∇f(x)−∇2f(x)(TH(x)− x)‖∗

+ Hr2
H(x)
2

(2.1.4)
≤ Hνr1+ν

H
(x)

1+ν + Hr2
H(x)
2 = r1+ν

H (x)
( Hν

1+ν + Hr1−ν
H

(x)
2

)
.

(2.1.27)

One of the main strong points of the classical Newton’s method is its
local quadratic convergence for the class of strongly convex functions with
Lipschitz continuous Hessian: σ2 > 0 and 0 < H1 < +∞ (see Section 1.4.1).
This property holds for the cubically regularized Newton as well [124, 111].
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Indeed, ensuring F (TH(x)) ≤ M∗H(x) as in algorithm (2.1.22), and having
H ≤ βH1 with some β ≥ 0, we get:

F (TH(x))− F ∗
(2.0.3)
≤ 1

2σ2
‖F ′(TH(x))‖2∗

(2.1.27)
≤ (1+β)2H2

1
8σ2

r4
H(x)

≤ (1+β)2H2
1

8σ3
2
〈∇2f(x)(TH(x)− x), TH(x)− x〉2

(2.1.26)
≤ (1+β)2H2

1
2σ3

2
(F (x)− F ∗)2

.

And the region of quadratic convergence is as follows:

Q =
{
x : F (x)− F ∗ ≤ 2σ3

2
(1+β)2H2

1

}
.

After reaching it, the method starts to double the number of the right digits
of the answer at every step, and this cannot last for a long time. Therefore,
from now on we are mainly interested in the global complexity bounds of
algorithm (2.1.22), which work for an arbitrary starting point x0.

For noncomposite case, as it was shown in [60], if for some ν ∈ [0, 1] we
have 0 < Hν < +∞ and the objective is just convex, then algorithm (2.1.22)
with small initial parameter H0 generates a solution x̂ with f(x̂) − f∗ ≤ ε

in
O
((HνD2+ν

0
ε

) 1
1+ν
)

iterations, where D0 = sup
x
{‖x− x∗‖ : f(x) ≤ f(x0)}. Thus, the method

has a sublinear rate of convergence on the class of convex functions with
Hölder continuous Hessian. It can automatically adapt to the actual level
of smoothness. In what follows we show that the same algorithm achieves
linear rate of convergence for the class of uniformly convex functions of
degree q = 2 + ν, namely for functions with bounded condition number:
infν∈[0,1] ων < +∞.

In the remaining part, we usually assume that the smooth part of our
objective is not purely quadratic. This is equivalent to the condition

inf
ν∈[0,1]

Hν > 0.

However, to conclude this section, let us briefly discuss the case

min
ν∈[0,1]

Hν = 0.
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If we knew in advance that f is a convex quadratic function, then no regu-
larization would be needed since a single step x 7→ TH(x) with H = 0 would
solve the problem. However, if our function is given by a black-box oracle
and we do not know a priori that its smooth part is quadratic, then we
can still use algorithm (2.1.22). For this case we prove the following simple
result.

Proposition 2.1.8. Let A : E → E∗ be a self-adjoint positive semidefinite
linear operator and b ∈ E∗. Assume that f(x) = 1

2 〈Ax, x〉 − 〈b, x〉, and the
minimum x∗ ∈ Argminx

{
F (x) def= f(x) + ψ(x)

}
does exist. Then, in order

to get F (xK)− F ∗ ≤ ε with arbitrary ε > 0, it is enough to perform

K =
⌈
log2

H0‖x0−x∗‖3

6ε + 1
⌉

(2.1.28)

iterations of algorithm (2.1.22). Therefore, the convergence of the method
is very fast in the quadratic case.

Proof. In our case, the quadratic model coincides with the smooth part
of the objective: Ω2(f, x; y) ≡ f(y), for all x, y ∈ E. Therefore, at every
iteration k of algorithm (2.1.22) we have ik = 0 and Hk = 2−kH0. Note
that xk+1 = T2−kH0(xk) = argminy

{
F (y) + 2−kH0

6 ‖y − xk‖3
}
, and

F (xk+1) ≤ F (y) + 2−kH0
6 ‖y − xk‖3, ∀y ∈ domψ. (2.1.29)

If it holds that ‖xk+1 − x∗‖ ≤ ‖xk − x∗‖ for all k ≥ 0, then by plugging
y ≡ x∗ into (2.1.29), we get F (xk+1)−F ∗ ≤ 2−k H0

6 ‖x0−x∗‖3, which results
in the estimate (2.1.28). In order to verify ‖xk+1−x∗‖ ≤ ‖xk−x∗‖, observe
that

‖xk − x∗‖2 = ‖(xk − xk+1) + (xk+1 − x∗)‖2

= ‖xk+1 − x∗‖2 + ‖xk − xk+1‖2

+ 2〈B(xk − xk+1), xk+1 − x∗〉.

Then it is enough to show that 〈B(xk−xk+1), x∗−xk+1〉 ≤ 0. Since xk+1
satisfies the first-order optimality condition:

−2−(k+1)H0‖xk+1 − xk‖B(xk+1 − xk) def= F ′(xk+1) ∈ ∂F (xk+1),
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we have

〈B(xk − xk+1), x∗ − xk+1〉 = 2k+1

H0‖xk−xk+1‖ 〈F
′(xk+1), x∗ − xk+1〉 ≤ 0,

where the last inequality follows from the convexity of the objective.

2.1.3 Complexity of the Universal Scheme

In this section, we are going to justify the global linear rate of convergence
of algorithm (2.1.22) for the class of twice differentiable uniformly convex
functions with Hölder continuous Hessian. Universality of this method is
ensured by the adaptive estimation of the parameter H over the whole
sequence of iterations. It is important to distinguish two cases: Hk+1 < Hk

and Hk+1 ≥ Hk.
First, we need to estimate the progress in the objective function after

minimizing the cubic model. There are two different situations here:

either Hr1−ν
H (x) ≤ 2Hν

1+ν , or Hr1−ν
H (x) > 2Hν

1+ν .

Lemma 2.1.9. Let 0 < Hν < +∞ and σ2+ν > 0 for some ν ∈ [0, 1]. Then
for an arbitrary x ∈ domψ and H > 0, we have:

F (x)−M∗H(x)

≥ min
[
(F (x)− F ∗) · (1+ν)

(2+ν) ·min
{( (1+ν)

2(2+ν)ων

) 1
1+ν , 1

}
,

(F (TH(x))− F ∗)
3(1+ν)
2(2+ν) ·

( 2+ν
1+ν
) 3(1+ν)

2(2+ν) · (σ2+ν)
3

2(2+ν)

3
√
H

]
.

(2.1.30)

Proof. Let us consider two cases. 1) Hr1−ν
H (x) ≤ 2Hν

1+ν . Then, for an arbi-
trary y ∈ domψ, we have:

M∗H(x) = Ω2(f, x;TH(x)) + H‖TH(x)−x‖3

6 + ψ(TH(x))

≤ Ω2(f, x; y) + Hr1−ν
H

(x)‖y−x‖2+ν

2(2+ν) + ψ(y)

(2.1.5)
≤ F (y) + Hν‖y−x‖2+ν

(1+ν)(2+ν) + Hr1−ν
H

(x)‖y−x‖2+ν

2(2+ν)

≤ F (y) + 2Hν‖y−x‖2+ν

(1+ν)(2+ν) ,
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where the first inequality follows from the fact that

TH(x) = argmin
y

{
Ω2(f, x; y) + Hr1−ν

H
(x)‖y−x‖2+ν

2(2+ν) + ψ(y)
}
.

Let us restrict y to the segment: y = αx∗+(1−α)x, with α ∈ [0, 1]. Taking
into account the uniform convexity of the objective, we get:

M∗H(x) ≤ F (x)− α (F (x)− F ∗) + α2+ν 2Hν‖x−x∗‖2+ν

(1+ν)(2+ν)

(2.0.1)
≤ F (x)−

(
α− α2+ν 2Hν

(1+ν)σ2+ν

)
(F (x)− F ∗) .

The minimum of the right-hand side is attained at

α∗ = min
{ (1+ν)

2(2+ν)ων , 1
} 1

1+ν .

By plugging this value into the bound, we have:

M∗H(x) ≤ F (x)−min
{( (1+ν)

2(2+ν)ων

)1/(1+ν)
, 1
}
· (1+ν)

(2+ν) · (F (x)− F ∗) ,

and this is the first argument of the minimum in (2.1.30).
2) Hr1−ν

H (x) > 2Hν
1+ν . By (2.1.27) we have the bound:

‖F ′(TH(x))‖∗ < Hr2
H(x). (2.1.31)

Because ∇2f(x) � 0, we get the second argument of the minimum:

F (x)−M∗H(x)
(2.1.26)
≥ Hr3

H(x)
3

(2.1.31)
≥ ‖F ′(TH(x))‖

3
2
∗

3
√
H

(2.0.3)
≥

(
2+ν
1+ν

) 3(1+ν)
2(2+ν) · (σ2+ν)

3
2(2+ν)

3
√
H

· (F (TH(x))− F ∗)
3(1+ν)
2(2+ν) .
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Denote by ϑν the following auxiliary value, for ν ∈ [0, 1]:

ϑν
def= H

2
1+ν
ν

(σ2+ν)
1−ν

(1+ν)(2+ν)
· 6·(8+ν)

1−ν
1+ν

((1+ν)(2+ν))
2

1+ν
·
( 1+ν

2+ν
) 1−ν

2+ν . (2.1.32)

Then, the next lemma shows what happens when the parameter H is
increasing during the iterations.

Lemma 2.1.10. Assume that for a fixed x ∈ domψ the parameter H > 0
is such that:

F (TH(x)) > M∗H(x). (2.1.33)

If for some ν ∈ [0, 1], we have σ2+ν > 0, then it holds:

H (F (T2H(x))− F ∗)
1−ν
2+ν < ϑν . (2.1.34)

Proof. Firstly, let us prove, that from (2.1.33) we have

Hr1−ν
H (x) < 6Hν

(1+ν)(2+ν) . (2.1.35)

Assuming by contradiction, Hr1−ν
H (x) ≥ 6Hν

(1+ν)(2+ν) , we get

M∗H(x) = H‖TH(x)−x‖3

6 + Ω2(f, x;TH(x)) + ψ(TH(x))

≥ Hν‖TH(x)−x‖2+ν

(1+ν)(2+ν) + Ω2(f, x;TH(x)) + ψ(TH(x))

(2.1.5)
≥ F (TH(x)),

which contradicts (2.1.33). Secondly, by its definition, M∗H(x) is a con-
cave function of H. Therefore, its derivative d

dHM
∗
H(x) = 1

6r
3
H(x) is non-

increasing. Hence, it holds:

r2H(x) ≤ rH(x)
(2.1.35)
<

( 6Hν
(1+ν)(2+ν)H

) 1
1−ν . (2.1.36)
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Finally, by the smoothness and the uniform convexity, we obtain:

H (F (T2H(x))− F ∗)
1−ν
2+ν

(2.0.3)
≤ H

(
1+ν
2+ν
( 1
σ2+ν

) 1
1+ν
) 1−ν

2+ν
‖F ′(T2H(x))‖

1−ν
1+ν
∗

(2.1.27)
≤ H

(
1+ν
2+ν
( 1
σ2+ν

) 1
1+ν
) 1−ν

2+ν
(
r1+ν
2H (x) ·

(
Hν
1+ν +Hr1−ν

2H (x)
)) 1−ν

1+ν

(2.1.36)
< H

(
1+ν
2+ν
( 1
σ2+ν

) 1
1+ν
) 1−ν

2+ν
(
r1+ν
2H (x) · (8+ν)Hν

(1+ν)(2+ν)

) 1−ν
1+ν

(2.1.36)
<

(
1+ν
2+ν
( 1
σ2+ν

) 1
1+ν
) 1−ν

2+ν
(

Hν
(1+ν)(2+ν)

) 2
1+ν 6(8 + ν)

1−ν
1+ν

def= ϑν . �

We are now ready to prove the main result about the universal scheme.

Theorem 2.1.11. Assume that for a fixed ν ∈ [0, 1] we have 0 < Hν < +∞
and σ2+ν > 0. Let parameter H0 in algorithm (2.1.22) be small enough:

H0 ≤ ϑν
(F (x0)−F∗)(1−ν)/(2+ν) , (2.1.37)

where ϑν is defined by (2.1.32). Let the sequence {xk}Kk=0 generated by the
method satisfy condition:

F (THk2j (xk))− F ∗ ≥ ε > 0, 0 ≤ j ≤ ik, 0 ≤ k ≤ K − 1. (2.1.38)

Then, for every 0 ≤ k ≤ K − 1, we have

F (xk+1)− F ∗

≤
(
1−min

{ (2+ν)((1+ν)(2+ν))1/(1+ν)

(1+ν)63/2·21/2·(8+ν)(1−ν)/(2+2ν) · 1
(ων)

1
1+ν

, 1
2
})

· (F (xk)− F ∗) .

(2.1.39)

Therefore, the rate of convergence is linear, and

K ≤ max
{

(ων)
1

1+ν · 1+ν
2+ν ·

63/2·21/2·(8+ν)(1−ν)/(2+2ν)

((1+ν)(2+ν))1/(1+ν) , 1
}
· log F (x0)−F∗

ε .
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Moreover, we have the following bound for the total number of oracle calls
NK during the first K iterations:

NK ≤ 2K + log2
ϑν

ε(1−ν)/(2+ν) − log2H0. (2.1.40)

Proof. The proof is based on Lemmas 2.1.9 and 2.1.10, and monotonicity
of the sequence

{
F (xk)

}
k≥0. Firstly, we need to show that every iteration

of the method is well-defined. Namely, we are going to verify that for a
fixed 0 ≤ k ≤ K − 1, there exists a finite integer ` ≥ 0 such that either
F (THk2`(xk)) ≤M∗Hk2`(xk) or F (THk2`+1(xk))− F ∗ < ε.

Indeed, let us set

` := max
{

0, log2

⌈
ϑν

Hkε(1−ν)/(2+ν)

⌉}
,

and
H := Hk2` ≥ ϑν

ε(1−ν)/(2+ν) . (2.1.41)

Then, if we have both F (TH(xk)) > M∗H(xk), and F (T2H(xk)) − F ∗ ≥ ε,
we get by Lemma 2.1.10:

H
(2.1.34)
< ϑν

(F (T2H(xk))−F∗)(1−ν)/(2+ν) ≤ ϑν
ε(1−ν)/(2+ν) ,

which contradicts (2.1.41). Therefore, if we are unable to find the value
0 ≤ ik ≤ ` (see step 1 of the algorithm) in a finite number of steps, that
only means we have already solved the problem up to accuracy ε.

Now, let us show that for every 0 ≤ k ≤ K it holds:

Hk (F (xk)− F ∗)
1−ν
2+ν ≤ max{ϑν , H0 (F (x0)− F ∗)

1−ν
2+ν }. (2.1.42)

This inequality is obviously valid for k = 0. Assume it is also valid for some
k ≥ 0. Then, by definition of Hk+1 (see step 3 of the algorithm), we have
Hk+1 = Hk2ik−1. There are two cases. 1) ik = 0. Then Hk+1 < Hk. By
monotonicity of

{
F (xk)

}
k≥0 and by induction, we get:

Hk+1 (F (xk+1)− F ∗)
1−ν
2+ν < Hk (F (xk)− F ∗)

1−ν
2+ν

≤ max{ϑν , H0 (F (x0)− F ∗)
1−ν
2+ν }.

2) ik > 0. Then applying Lemma 2.1.10 with H := Hk2ik−1 = Hk+1
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and x := xk, we have:

Hk+1 (F (xk+1)− F ∗)
1−ν
2+ν = H (F (T2H(x))− F ∗)

1−ν
2+ν

(2.1.34)
≤ ϑν .

Thus, (2.1.42) is true by induction. Choosing H0 small enough (2.1.37), we
have:

2Hk (F (xk)− F ∗)
1−ν
2+ν ≤ 2ϑν , 0 ≤ k ≤ K. (2.1.43)

From Lemma 2.1.9 we know, that one of the two following estimates is true
(denote δk := F (xk)− F ∗):

1. F (xk)− F (xk+1) ≥ α · δk ⇔ δk+1 ≤ (1− α) · δk, or

2. F (xk) − F (xk+1) ≥ β · δk+1 ⇔ δk+1 ≤ (1 + β)−1δk ≤ (1 −
min{β, 1}/2)δk,

where
α

def= 1+ν
2+ν ·min

{( (1+ν)
2(2+ν)ων

) 1
1+ν , 1

}
,

and
β

def=
( 2+ν

1+ν
) 3(1+ν)

2(2+ν) · (σ2+ν)
3

2(2+ν)

3(2ϑν)1/2

(2.1.32)= 2+ν
1+ν ·

21/2·((1+ν)(2+ν))
1

1+ν

63/2·(8+ν)(1−ν)/(2+2ν) ·
( 1
ων

) 1
1+ν .

It remains to notice, that α ≥ min
{
β, 1
}
/2. Thus we obtain (2.1.39).

Finally, let us estimate the total number of the oracle calls NK during
the first K iterations. At each iteration the oracle is called ik + 1 times,
and we have Hk+1 = Hk2ik−1. Therefore,

NK =
∑K−1
k=0 (ik + 1) =

∑K−1
k=0

(
log2

Hk+1
Hk

+ 2
)

= 2K + log2HK − log2H0

(2.1.43),(2.1.38)
≤ 2K + log2

ϑν
ε(1−ν)/(2+ν) − log2H0. �

Note that condition (2.1.37) for the initial choice of H0 can be seen as
a definition of the moment, after which we can guarantee the linear rate
of convergence (2.1.39). In practice we can launch algorithm (2.1.22) with
arbitrary H0 > 0. There are two possible options: either the method halves
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Hk at every step in the beginning, so Hk becomes small very quickly, or
this value is increased at least once, and the required bound is guaranteed
by Lemma 2.1.10. It can be easily proved, that this initial phase requires
no more than K0 =

⌈
log2

H0ε
(1−ν)/(1+ν)

ϑν

⌉
oracle calls.

2.1.4 Discussion

Let us discuss the global complexity results, provided by Theorem 2.1.11
for the Cubic Regularization of the Newton Method with the adaptive ad-
justment of the regularization parameter.

For the class of twice continuously differentiable µ-strongly convex func-
tions with Lipschitz continuous gradients, it is well known that the classical
Gradient Method needs

O
(
L1
µ log F (x0)−F∗

ε

)
(2.1.44)

iterations for computing an ε-solution of the problem (e.g. [114]). As
it was shown in [23], this result is shared by a variant of Cubic Regu-
larization of the Newton Method. This is much better than the bound
O
((
L1
µ

)2 log F (x0)−F∗
ε

)
, known for the Damped Newton Method (see Sec-

tion 1.4.2).
For the class of uniformly convex functions of degree q = 2 + ν charac-

terized by a Hölder continuous Hessian of degree ν ∈ [0, 1] we have proved
the following parametric estimates:

O
(

max
{(
ων
) 1

1+ν , 1
}
· log F (x0)−F∗

ε

)
,

where ων
def= Hν

σ2+ν
is the condition number of degree ν. However, in practice

we may not know exactly an appropriate value of the parameter ν. It is
important that our algorithm automatically adjusts to the best possible
complexity bound:

O
(

max
{

inf
ν∈[0,1]

(
ων
) 1

1+ν , 1
}
· log F (x0)−F∗

ε

)
. (2.1.45)

Note that for the functional class: ∀x ∈ domψ (µB � ∇2f(x) � L1B), we
have

‖∇2f(x)−∇2f(y)‖ ≤ L1 − µ, ∀x, y ∈ domψ.

Thus, H0 ≤ L1 − µ and ω0 ≤ L1−µ
µ . So we can conclude that esti-
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mate (2.1.45) is better than (2.1.44). Moreover, addition to our objective an
arbitrary convex quadratic function does not change any of Hν , ν ∈ [0, 1].
Thus it can only improve the condition number ων , while the ratio L1/µmay
become arbitrarily bad. It confirms an intuition, that a natural Newton-
type minimization scheme should not be affected by any quadratic parts of
the objective, and the notion of well-conditioned and ill-conditioned prob-
lems for second-order methods should be different from that of for first-order
ones.

In the recent paper [61], a linear rate of convergence was also proven for
the accelerated second-order scheme, with the complexity bound

O
(
max{(ων)

1
2+ν , 1} · log HνD

2+ν
0
ε

)
. (2.1.46)

This is a better rate than (2.1.45). However, the method requires to know
the parameter ν and the constant of uniform convexity. Thus, one theoreti-
cal question remains open: is it possible to construct universal second-order
scheme matching (2.1.46) in the uniformly convex case?

It would be also interesting to generalize our results onto the Tensor
Methods of arbitrary order. The situation with the methods of higher or-
der is more difficult. One of the big issues is that Taylor’s polynomial of
degree p ≥ 3 is generally nonconvex. We need to regularize the polyno-
mial by the power of norm, with sufficiently big regularizing coefficient (see
Section 1.5.1). Thus, using any adaptive strategy for the regularization co-
efficient, one need to ensure that the subproblem remains tractable. In our
theoretical analysis, we also rely on the convexity of the model (in particu-
lar, in Lemma 2.1.9).

Note that one of the conditions to prove the universality of the method
is (2.1.38), which bounds from below the residuals for all test points of the
optimization process. This raises the question of termination criterion for
the method. A working strategy is to do as many iterations of the method
as our budget allows. An interesting open problem is to develop efficiently
computable accuracy certificates for the Cubic Newton.

By looking at the definitions of Hν and σ2+ν , we can see that, for all
x, y ∈ domψ, x 6= y,

Hν ≥ ‖∇2f(x)−∇2f(y)‖
‖x−y‖ν , 1

σ2+ν
≥ ‖x−y‖2+ν

〈∇f(x)−∇f(y),x−y〉 ,
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and
ων = Hν

σ2+ν
≥ ‖∇2f(x)−∇2f(y)‖·‖x−y‖2

〈∇f(x)−∇f(y),x−y〉

≥ 〈(∇2f(x)−∇2f(y))(x−y),x−y〉
〈∇f(x)−∇f(y),x−y〉 .

The last fraction does not depend on any particular ν and does not fix
any norms. So, for any twice-differentiable convex function, we can define
the following number:

ω
def= sup

x,y∈domψ
x 6=y

〈(∇2f(x)−∇2f(y))(x−y),x−y〉
〈∇f(x)−∇f(y),x−y〉 .

If it is finite (ω < +∞), then it could serve as an indicator of the second-
order non-degeneracy, for which we have an upper bound: ων ≥ ω, ν ∈ [0, 1].

2.2 Local Convergence of Tensor Methods

One of the classical results about Newton’s Method is its local quadratic
convergence (see Section 1.4.1). For the Cubic Newton Method, its local
superlinear convergence was justified in [124].

This part of the thesis is aimed to study local convergence of high-
order methods, generalizing corresponding results from [124] in several ways.
We establish local superlinear convergence of the Tensor Method (1.5.1) of
degree p ≥ 2, in the case when the composite objective is uniformly convex
of arbitrary degree q from the interval 2 ≤ q < p + 1. For strongly convex
functions (q = 2), this gives the local convergence of order p.

We recall the definition of the Tensor step in Section 2.2.1. Then, we
declare some of its properties, which are required for our analysis.

In Section 2.2.2, we prove local superlinear convergence of the Tensor
Method in the function value and in the norm of minimal subgradient, under
the assumption of uniform convexity of the objective.

In Section 2.2.3, we discuss the global behavior of the method and justify
sublinear and linear global rates of convergence for convex and uniformly
convex cases respectively.

One application of our developments is provided in Section 2.2.4. We
show how local convergence can be applied for computing an inexact step in
proximal methods. A global sublinear rate of convergence for the resulting
scheme is also given.
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2.2.1 Main Inequalities

For solving the composite minimization problem,

min
x

{
F (x) = f(x) + ψ(x)

}
,

let us define one step T = TH(x) of the regularized composite Tensor Method
of degree p ≥ 2

TH(x) def= argmin
y

{
Ωp(f, x; y) + H

(p+1)!‖y − x‖
p+1 + ψ(y)

}
. (2.2.1)

Theorem 1.5.1 states that for

H ≥ pLp (2.2.2)

the auxiliary optimization problem in (2.2.1) is convex. This condition is
crucial for the implementability of the Tensor Method and we always assume
it is to be satisfied.

Then, we can write down the first-order optimality condition for the
auxiliary subproblem in (2.2.1):

〈∇Ωp(f, x;T ) + H
p! ‖T − x‖

p−1B(T − x), y − T 〉

+ ψ(y) ≥ ψ(T ),
(2.2.3)

for all y ∈ domψ. In other words, for vector

ψ(T ) def= −
(
∇Ωp(f, x;T ) + H

p! ‖T − x‖
p−1B(T − x)

)
(2.2.4)

we have ψ′(T )
(2.2.3)
∈ ∂ψ(T ). This fact explains our notation

F ′(T ) def= ∇f(T ) + ψ′(T ) ∈ ∂F (T ). (2.2.5)

Let us present some properties of the point T = TH(x). First of all, we
need some bounds for the norm of vector F ′(T ). Note that∥∥F ′(T ) + H

p! ‖T − x‖
p−1B(T − x)

∥∥
∗

(2.2.4)=
∥∥∇f(T )−∇Ωp(f, x;T )

∥∥
∗

(1.3.6)
≤ Lp

p! ‖T − x‖
p.

(2.2.6)
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Consequently,
‖F ′(T )‖∗ ≤ Lp+H

p! ‖T − x‖
p. (2.2.7)

Secondly, we use the following lemma.

Lemma 2.2.1. Let β > 1 and H = βLp. Then

〈F ′(T ), x− T 〉

≥
(

p!
(p+1)Lp

) 1
p · ‖F ′(T )‖

p+1
p
∗ · (β2−1)

p−1
2p

β · p

(p2−1)
p−1
2p
.

(2.2.8)

In particular, if β = p, then

〈F ′(T ), x− T 〉 ≥
(

p!
(p+1)Lp

) 1
p · ‖F ′(T )‖

p+1
p
∗ . (2.2.9)

Proof. Denote r = ‖T − x‖, h = H
p! , and l = Lp

p! . Then inequality (2.2.6)
can be written as follows:

‖F ′(T ) + hrp−1B(T − x)‖2∗ ≤ l2r2p.

This means that

〈F ′(T ), x− T 〉 ≥ 1
2hrp−1 ‖F ′(T )‖2∗ + r2p(h2−l2)

2hrp−1 . (2.2.10)

Denote

a = 1
2h‖F

′(T )‖2∗, b = h2−l2
2h , τ = rp−1, α = p+1

p−1 .

Then inequality (2.2.10) can be rewritten as follows:

〈F ′(T ), x− T 〉 ≥ a
τ + bτα ≥ min

t>0

{
a
t + btα

}
= (1 + α)

(
a
α

) α
1+α b

1
1+α .

By taking into account that 1 + α = 2p
p−1 and α

1+α = p+1
2p , and by using the
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actual meaning of a, b, and α, we get

〈F ′(T ), x− T 〉 ≥ 2p
p−1 ·

‖F ′(T )‖
p+1
p
∗

(2h)
p+1
2p

· (p−1)
p+1
2p

(p+1)
p+1
2p
· (h2−l2)

p−1
2p

(2h)
p−1
2p

= ‖F ′(T )‖
p+1
p
∗ · (h2−l2)

p−1
2p

h · p

(p+1)
p+1
2p (p−1)

p−1
2p

= ‖F ′(T )‖
p+1
p
∗ · (h2−l2)

p−1
2p

h · p

(p2−1)
p−1
2p (p+1)

1
p

.

It remains to note that

(h2−l2)
p−1
2p

h = (H2−L2
p)
p−1
2p

H · (p!)
1
p = (β2−1)

p−1
2p

β ·
(
p!
Lp

) 1
p .

2.2.2 Local Convergence

We analyse now the local behavior of the Regularized Composite Tensor
Method (RCTM):

x0 ∈ domψ, xk+1 = TH(xk), k ≥ 0 (2.2.11)

This is algorithm (1.5.1) with fixed regularization parameter. In order to
prove local superlinear convergence of this scheme, we need one more as-
sumption.

Assumption 2.2.2. For all x, y ∈ domψ and for all F ′(x) ∈ ∂F (x), F ′(y) ∈
∂F (y), it holds:

〈F ′(x)− F ′(y), x− y〉 ≥ σq‖x− y‖q, (2.2.12)

for some q ≥ 2 and σq > 0. Hence, we assume that the full objective in the
composite problem is uniformly convex of degree q (see Lemma 2.0.1).

Inequality (2.2.12) gives us the following local convergence rate for RCTM.

Theorem 2.2.3. Let σq > 0 for some q ≥ 2. Then for the sequence {xk}k≥0
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generated by method (2.2.11) with H := pLp, we have

F (xk+1)− F ∗

≤ (q − 1)q
p−q+1
q−1

( 1
σq

) p+1
q−1
(
Lp+H
p!

) q
q−1 [

F (xk)− F ∗
] p
q−1 .

(2.2.13)

Proof. Indeed, for any k ≥ 0 we have

F (xk)− F ∗ ≥ F (xk)− F (xk+1)

(2.0.1)
≥ 〈F ′(xk+1), xk − xk+1〉+ σq

q ‖xk − xk+1‖q

(2.2.8)
≥ σq

q ‖xk − xk+1‖q
(2.2.7)
≥ σq

q

(
p!

Lp+H ‖F
′(xk+1)‖∗

) q
p

(2.0.3)
≥ σq

q

(
p!

Lp+H

) q
p

(
q σ

1
q−1
q

q−1 (F (xk+1)− F ∗)
) q−1

p

.

And this is exactly inequality (2.2.13).

Corollary 2.2.4. If p > q − 1, then method (2.2.11) has local superlinear
rate of convergence.

Proof. Indeed, in this case p
q−1 > 1.

For example, if q = 2 (strongly convex function) and p = 2 (Cubic
Regularization of the Newton Method), then the rate of convergence is
quadratic. If q = 2, and p = 3, then the local rate of convergence is cubic,
etc.

Let us study now the local convergence of the method (2.2.11) in terms
of the norm of gradient. For any x ∈ domψ denote

η(x) def= min
g∈∂ψ(x)

‖∇f(x) + g‖∗. (2.2.14)

If ∂ψ(x) = ∅, we set η(x) = +∞.

Theorem 2.2.5. Let σq > 0 for some q ≥ 2. Then for the sequence {xk}k≥0
generated by method (2.2.11) with H := pLp, we have

η(xk+1) ≤ ‖F ′(xk+1)‖∗ ≤ Lp+H
p!

[
1
σq
η(xk)

] p
q−1

. (2.2.15)
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Proof. Indeed, in view of inequality (2.2.12), we have

〈∇f(xk) + gk, xk − xk+1〉

≥ 〈F ′(xk+1), xk − xk+1〉+ σq‖xk − xk+1‖q

(2.2.8)
≥ σq‖xk − xk+1‖q,

where gk is an arbitrary vector from ∂ψ(xk). Therefore, we conclude that

η(xk) ≥ σq‖xk − xk+1‖q−1.

It remains to use inequality (2.2.7).
As we can see, the condition for superlinear convergence of the method

(2.2.11) in terms of the norm of the gradient is the same as in Corollary
2.2.4: we need to have p

q−1 > 1, that is p > q − 1. Moreover, the local rate
of convergence has the same order as that for the residual of the function
value.

According to Theorem 2.2.3, the region of superlinear convergence of
RCTM in terms of the function value is as follows:

Q =
{
x : F (x)− F ∗ ≤ 1

q ·
(

σp+1
q

(q−1)q−1 ·
(

p!
Lp+H

)q) 1
p−q+1

}
. (2.2.16)

Alternatively, by Theorem 2.2.5, in terms of the norm of minimal subgradi-
ent (2.2.14), the region of superlinear convergence looks as follows:

G =
{
x : η(x) ≤

(
σpq ·

(
p!

Lp+H

)q−1) 1
p−q+1

}
. (2.2.17)

Note that these sets can be very different. Indeed, set Q is a closed and
convex neighborhood of the point x∗. At the same time, the structure of the
set G can be very complex since in general the function η(x) is discontinuous.
Let us look at simple example where ψ(x) = IndQ(x), the indicator function
of a closed convex set Q.

Example 2.2.6. Consider the following optimization problem:

min
x∈R2

{
f(x) : ‖x‖2 def= (x(1))2 + (x(2))2 ≤ 1

}
, (2.2.18)
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with
f(x) = σ2

2 ‖x− x̄‖
2 + 2σ3

3 ‖x− x̄‖
3,

for some fixed σ2, σ3 > 0 and x̄ = (0,−2) ∈ R2.

2 1 0 1 2
x(1)

2

1

0

1

2

x(2)

Figure 2.1: Level sets for constrained optimization problem (2.2.18).

We have
∇f(x) = r(x) · (x(1), x(2) + 2),

where r : R2 → R is

r(x) = σ2 + 2σ3‖x− x̄‖.

Note that f is uniformly convex of degree q = 2 with constant σ2, and for
q = 3 with constant σ3 (see Lemma 4.2.3 in [117]). Moreover, we have for
any ν ∈ [0, 1]:

〈∇f(x)−∇f(y), x− y〉 ≥ σ2‖x− y‖2 + σ3‖x− y‖3

≥ min
t≥0

{
σ2
tν + σ3t

1−ν
}
· ‖x− y‖2+ν

≥ σ1−ν
2 σν3 · ‖x− y‖2+ν .

Hence, the function is uniformly convex of any degree q ∈ [2, 3] (note that
it also follows from inequality (2.1.2), which was justified by a more general
reasoning). At the same time, the Hessian of f is Lipschitz continuous with
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constant L2 = 4σ3 (see Lemma 4.2.4 in [117]).

Clearly, in this problem x∗ = (0,−1), and it can be written in the
composite form with

ψ(x) =
{

+∞, if ‖x‖ > 1,
0, otherwise.

Note that for x ∈ domψ ≡ {x : ‖x‖ ≤ 1}, we have

∂ψ(x) =
{

0, if ‖x‖ < 1,
{γx, γ ≥ 0}, if ‖x‖ = 1.

Therefore, if ‖x‖ < 1, then η(x) = ‖∇f(x)‖ ≥ σ2. If ‖x‖ = 1, then

η2(x) (2.2.14)= min
γ≥0

{[
(r(x) + γ)x(1)]2 +

[
(r(x) + γ)x(2) + 2r(x)

]2}
= min

γ≥0

{
(r(x) + γ)2 + 4r(x)(r(x) + γ)x(2) + 4r2(x)

}

=
{

4r2(x)(1− (x(2))2), if x(2) ≤ − 1
2 ,

r2(x)(5 + 4x(2)), otherwise.

Thus, in any neighbourhood of x∗, η(x) vanishes only along the boundary
of the feasible set.

So, a natural question that arises is how Tensor Method (2.2.11) could
come to the region G. The answer follows from the inequalities derived in
Section 2.2.1. Indeed,

‖F ′(xk+1)‖∗
(2.2.7)
≤ Lp+H

p! ‖xk − xk+1‖p,

and
F (xk)− F (xk+1) ≥ 〈F ′(xk+1), xk − xk+1〉

(2.2.9)
≥

(
p!

(p+1)Lp

) 1
p · ‖F ′(xk+1)‖

p+1
p
∗ .

Thus, at some moment the norm ‖F ′(xk)‖∗ will be small enough to enter G.
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2.2.3 Global Complexity Bounds

Let us briefly discuss the global complexity bounds of method (2.2.11),
namely the number of iterations required for coming from an arbitrary initial
point x0 ∈ domψ to the region Q.

First, note that for every step T = TH(x) of the method with parameter
H ≥ pLp, we have

F (T )
(1.3.5)
≤ Ωp(f, x;T ) + H

(p+1)!‖T − x‖
p+1 + ψ(T )

(2.2.1)= min
y∈E

{
Ωp(f, x; y) + H

(p+1)!‖y − x‖
p+1 + ψ(y)

}
(1.3.5)
≤ min

y∈E

{
F (y) + H+Lp

(p+1)!‖y − x‖
p+1
}
.

Therefore,

F (T (x))− F ∗ ≤ H+Lp
(p+1)!‖x− x

∗‖p+1, ∀x ∈ domψ, (2.2.19)

with x∗
def= argminy F (y), which exists by our assumption. Denote by D0

the maximal radius of the initial level set of the objective, which we assume
to be finite:

D0
def= sup

x∈domψ

{
‖x− x∗‖ : F (x) ≤ F (x0)

}
< +∞.

Then, by monotonicity of method (2.2.11) and by convexity we conclude
that

1
D0

(
F (xk+1)−F ∗

)
≤ 1

D0
〈F ′(xk+1), xk+1−x∗〉 ≤ ‖F ′(xk+1)‖∗. (2.2.20)

In the general convex case for the Tensor Method, we can prove the
global sublinear rate of convergence of the order O(1/kp) [118]. For com-
pleteness of presentation, let us prove an extension of this result onto the
composite case. Note that the theorems from this section are valid for p = 1
(the Gradient Method) as well.

Theorem 2.2.7. For method (2.2.11) with H := pLp we have

F (xk)− F ∗ ≤ (p+1)(2p)p
p! · LpD

p+1
0

(k−1)p , k ≥ 2. (2.2.21)
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2.2. Local Convergence of Tensor Methods

Proof. Indeed, in view of (2.2.9) and (2.2.20), we have, for every k ≥ 0, that

F (xk)− F (xk+1) ≥ 〈F ′(xk+1), xk − xk+1〉

(2.2.9)
≥

(
p!

(p+1)Lp

) 1
p · ‖F ′(xk+1)‖

p+1
p
∗

(2.2.20)
≥

(
p!

(p+1)LpDp+1
0

) 1
p ·
(
F (xk+1)− F ∗

) p+1
p

.

Denoting δk = F (xk)−F ∗ and C =
(

p!
(p+1)LpDp+1

0

) 1
p , we obtain the follow-

ing recurrence:

δk − δk+1 ≥ Cδ
p+1
p

k+1 , k ≥ 0, (2.2.22)

or for µk = Cpδk
(2.2.19)
≤ 1, as follows:

µk − µk+1 ≥ µ
p+1
p

k+1, k ≥ 0.

Then, Lemma 1.1 from [60] provides us with the following guarantee:

µk ≤
(
p(1+µ1/p

1 )
k−1

)p
≤
(

2p
k−1

)p
, k ≥ 2.

Therefore,

δk = µk
Cp ≤

(
2p

C(k−1)

)p
= (p+1)(2p)p

p! · LpD
p+1
0

(k−1)p , k ≥ 2.

For a given degree q ≥ 2 of uniform convexity with σq > 0, and for
RCTM of order p ≥ q − 1, let us denote by ω̄p,q the following condition
number :

ω̄p,q
def= p+1

p! ·
(
q−1
q

)q−1
· LpD

p−q+1
0
σq

.

Then, we come to the following conclusion.

Corollary 2.2.8. In order to attain the region Q it is enough to perform⌈
2p ·

(
qq

(q − 1)q−1 · ω̄
p+1
p

p,q

) 1
p−q+1

⌉
+ 2 (2.2.23)
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iterations of the method.

Proof. Plugging (2.2.16) into (2.2.21).
We can improve this estimate, knowing that the objective is globally

uniformly convex (2.2.12). Then the linear rate of convergence arises at the
first state, till the entering in the region Q.

Theorem 2.2.9. Let σq > 0 with q ≤ p+1. Then for method (2.2.11) with
H := pLp, we have

F (xk)− F ∗ ≤ exp
(
− k

1+ω̄1/p
p,q

)
·
(
F (x0)− F ∗

)
, k ≥ 1. (2.2.24)

Therefore, for a given ε > 0 to achieve F (xK)−F ∗ ≤ ε, it is enough to set

K =
⌈
(1 + ω̄

1/p
p,q ) · log F (x0)−F∗

ε

⌉
+ 1. (2.2.25)

Proof. Indeed, for every k ≥ 0

F (xk)− F (xk+1)

≥ 〈F ′(xk+1), xk − xk+1〉

(2.2.9)
≥

(
p!

(p+1)Lp

) 1
p · ‖F ′(xk+1)‖

p+1
p
∗

=
(

p!
(p+1)Lp

) 1
p · ‖F ′(xk+1)‖

p−q+1
p

∗ · ‖F ′(xk+1)‖
q
p
∗

(2.2.20),(2.0.3)
≥

(
p!
p+1 ·

σq

LpD
p−q+1
0

) 1
p ·
(

q
q−1

) q−1
p ·

(
F (xk+1)− F ∗

)
=

(
1

ω̄p,q

) 1
p ·
(
F (xk+1)− F ∗

)
.

Denoting δk = F (xk)− F ∗, we obtain

δk+1 ≤ ω̄1/p
p,q

1+ω̄1/p
p,q

· δk ≤ exp
(
− 1

1+ω̄1/p
p,q

)
· δk, k ≥ 1. �

We see that, for RCTM with p ≥ 2 minimizing the uniformly convex
objective of degree q ≤ p+ 1, the condition number ω̄1/p

p,q is the main factor
in the global complexity estimates (2.2.23) and (2.2.25). Since in general
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2.2. Local Convergence of Tensor Methods

this number may be arbitrarily big, complexity estimate Õ(ω̄1/p
p,q ) in (2.2.25)

is much better than the estimate O(ω̄(p+1)/(p(p−q+1))
p,q ) in (2.2.23) because

of relation p+1
p−q+1 ≥ 1.

These global bounds can be improved, by using the universal (see the
previous Section 2.1) and the accelerated [111, 61, 63, 54, 145] high-order
schemes.

High-order tensor methods for minimizing the gradient norm have been
developed in [13, 48]. These methods achieve near-optimal global conver-
gence rates, and can be used for coming into the region G (2.2.17). Note
that for the composite minimization problems, some modification of these
methods is required, which ensures minimization of the subgradient norm.

Finally, let us mention recent results [122, 76], where it was shown that
it is possible to implement the third-order schemes by using only second-
order oracle information (see also Section 1.5.2). Hence, it is interesting to
investigate the local behaviour of the high-order methods under approximate
condition on the derivatives, which we keep as an open question for the
further research.

2.2.4 Application to Proximal Methods
Let us discuss now a general approach, which uses the local convergence of
the methods for justifying the global performance of proximal iterations.

The Proximal-Point algorithm [133] is one of the classical iterative meth-
ods in theoretical optimization. This method, as applied to minimizing a
convex function F : domF → R, consists of solving at each iteration the
following subproblem:

xk+1 = argmin
x

{
ak+1F (x) + 1

2‖x− xk‖
2
}
, k ≥ 0, (2.2.26)

where {ak}k≥1 is a sequence of positive coefficients, related to the iteration
counter.

Of course, in general, we can hope only to use an inexact solution to
the subproblem (2.2.26). The questions of practical implementations and
possible generalizations of the proximal method, are still in the area of
intensive research (see, for example [65, 144, 142, 140]).

One simple observation on the subproblem (2.2.26) is that it is 1-strongly
convex. Therefore, if we were be able to pick an initial point from the region
of superlinear convergence (2.2.16) or (2.2.17), we could minimize it very
quickly by RCTM of degree p ≥ 2 up to arbitrary accuracy. In this section,
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Chapter 2. Minimizing Uniformly Convex Functions

we are going to investigate this approach. For the resulting scheme, we will
prove the global rate of convergence of order Õ(1/k

p+1
2 ).

Denote by Φk+1 the regularized objective from (2.2.26):

Φk+1(x) def= ak+1F (x) + 1
2‖x− xk‖

2

= ak+1f(x) + 1
2‖x− xk‖

2 + ak+1ψ(x).

We fix a sequences of accuracies {δk}k≥1 and relax the assumption on exact
minimization in (2.2.26). Now, at every step we need to find a point xk+1
and corresponding subgradient vector gk+1 ∈ ∂Φk+1(xk+1) with bounded
norm:

‖gk+1‖∗ ≤ δk+1. (2.2.27)

Denote

F ′(xk+1) def= 1
ak+1

(gk+1 −B(xk+1 − xk)) ∈ ∂F (xk+1).

The following global convergence result holds for the general proximal
algorithm with inexact minimization criterion (2.2.27).

Theorem 2.2.10. Assume that there exist a minimum x∗ ∈ domψ of the
problem. Then, for any k ≥ 1, we have

k∑
i=1

ai(F (xi)− F ∗) + 1
2

k∑
i=1

a2
i ‖F ′(xi)‖2∗ + 1

2‖xk − x
∗‖2

≤ Rk(δ) def= 1
2

(
‖x0 − x∗‖+

k∑
i=1

δi

)2

.

(2.2.28)

Proof. First, let us prove that for all k ≥ 0 and for every x ∈ domψ, we
have

1
2‖x0 − x‖2 +

k∑
i=1

aiF (x) ≥ 1
2‖xk − x‖

2 + Ck(x), (2.2.29)

where

Ck(x) def=
k∑
i=1

(
aiF (xi) + a2

i

2 ‖F
′(xi)‖2∗ + 〈gi, x− xi−1〉 − δ2

i

2

)
.

This is obviously true for k = 0. Let it hold for some k ≥ 0. Consider the
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2.2. Local Convergence of Tensor Methods

step number k + 1 of the inexact proximal method.

By condition (2.2.27), we have

‖ak+1F
′(xk+1) +B(xk+1 − xk)‖2∗ ≤ δ2

k+1.

Equivalently,

〈ak+1F
′(xk+1), xk − xk+1〉

≥ a2
k+1
2 ‖F

′(xk+1)‖2∗ + 1
2‖xk+1 − xk‖2 −

δ2
k+1
2 .

(2.2.30)

Therefore, by using the inductive assumption and strong convexity of Φk+1(·),
we conclude

1
2‖x0 − x‖2 +

k+1∑
i=1

aiF (x) = 1
2‖x0 − x‖2 +

k∑
i=1

aiF (x) + ak+1F (x)

(2.2.29)
≥ Φk+1(x) + Ck(x)

≥ Φk+1(xk+1) + 〈gk+1, x− xk+1〉+ 1
2‖xk+1 − x‖2 + Ck(x)

= ak+1F (xk+1) + 1
2‖xk+1 − xk‖2 + 〈gk+1, xk − xk+1〉

+ 〈gk+1, x− xk〉+ 1
2‖xk+1 − x‖2 + Ck(x)

= ak+1F (xk+1) + 〈ak+1F
′(xk+1), xk − xk+1〉 − 1

2‖xk+1 − xk‖2

+ 〈gk+1, x− xk〉+ 1
2‖xk+1 − x‖2 + Ck(x)

(2.2.30)
≥ ak+1F (xk+1) + a2

k+1
2 ‖F

′(xk+1)‖2∗ −
δ2
k+1
2

+ 〈gk+1, x− xk〉+ 1
2‖xk+1 − x‖2 + Ck(x)

= 1
2‖xk+1 − x‖2 + Ck+1(x).

Thus, inequality (2.2.29) is valid for all k ≥ 0.
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Now, by plugging x ≡ x∗ into (2.2.29), we have

k∑
i=1

ai(F (xi)− F ∗) + 1
2

k∑
i=1

a2
i ‖F ′(xi)‖2∗ + 1

2‖xk − x
∗‖2

≤ 1
2‖x0 − x∗‖2 + 1

2

k∑
i=1

δ2
i +

k∑
i=1
〈gi, xi−1 − x∗〉

(2.2.27)
≤ 1

2‖x0 − x∗‖2 + 1
2

k∑
i=1

δ2
i +

k∑
i=1

δi‖xi−1 − x∗‖

def= αk.

(2.2.31)

In order to finish the proof, it is enough to show that αk ≤ Rk(δ).
Indeed,

αk+1 = αk + 1
2δ

2
k+1 + δk+1‖xk − x∗‖

(2.2.31)
≤ αk + 1

2δ
2
k+1 + δk+1

√
2αk

=
(√

αk + 1√
2δk+1

)2
.

Therefore,

√
αk ≤ √

αk−1 + 1√
2δk ≤ . . . ≤ √α0 + 1√

2

k∑
i=1

δi

= 1√
2

(
‖x0 − x∗‖+

k∑
i=1

δi

)
=
√
Rk(δ). �

Now, we are ready to use the result on the local superlinear convergence
of RCTM in the norm of subgradient (Theorem 2.2.5), in order to minimize
Φk+1(·) at every step of inexact proximal method.

Note that

∂Φk+1(x) = ak+1∂F (x) +B(x− xk),

and it is natural to start minimization process from the previous point xk,
for which ∂Φk+1(xk) = ak+1∂F (xk). Let us also notice, that the Lipschitz
constant of the p-th derivative (p ≥ 2) of the smooth part of Φk+1 is ak+1Lp.
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By using our previous notation, one step of RCTM can be written as
follows:

TH(Φk+1, z)
def= arg min

y∈E

{
ak+1Ωp(f, z; y) + H

(p+1)!‖y − z‖
p+1

+ ak+1ψ(y) + 1
2‖y − xk‖

2
}
,

where H = ak+1pLp. Then, a sufficient condition for z = xk to be in the
region of superlinear convergence (2.2.17) is

ak+1‖F ′(xk)‖∗ ≤
(

p!
ak+1(p+1)Lp

) 1
p−1

,

or, equivalently

ak+1 ≤
(

1
‖F ′(xk)‖∗

) p−1
p
(

p!
(p+1)Lp

) 1
p

.

To be sure that xk is strictly inside the region, we can pick:

ak+1 =
(

1
2‖F ′(xk)‖∗

) p−1
p
(

p!
(p+1)Lp

) 1
p (2.2.32)

Note, that this rule requires fixing an initial subgradient F ′(x0) ∈ ∂F (x0),
in order to choose a1.

Finally, we apply the following steps:

z0 = xk, zt+1 = TH(Φk+1, zt), t ≥ 0 (2.2.33)

We can estimate the required number of these iterations as follows.

Lemma 2.2.11. At every iteration k ≥ 0 of the inexact proximal method,
in order to achieve ‖Φ′k+1(zt)‖∗ ≤ δk+1, it is enough to perform

tk =
⌈

1
log2 p

· log2 log2

(
2Dk(δ)
δk+1

)⌉
(2.2.34)

steps of RCTM (2.2.33), where

Dk(δ) def= max
{
‖x0 − x∗‖+

k∑
i=1

δi,
(
p!‖F ′(x0)‖∗

(p+1)Lp2p−1

) 1
p

}
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Proof. According to (2.2.15), one step of RCTM (2.2.33) provides us with
the following guarantee in terms of the subgradients of our objective Φk+1(·):

‖Φ′k+1(zt)‖∗ ≤ ak+1(p+1)Lp
p! ‖Φ′k+1(zt−1)‖p∗, (2.2.35)

where we used in (2.2.15) the values q = 2, σq = 1, ak+1Lp for the Lip-
schitz constant of the p-th derivative of the smooth part of Φk+1, and
H = ak+1pLp.

Denote β ≡
(
ak+1(p+1)Lp

p!

) 1
p−1 (2.2.32)=

(
(p+1)Lp

2·p!·‖F ′(xk)‖∗

) 1
p . Then, from

(2.2.35) we have

β‖Φ′k+1(zt)‖∗ ≤
(
β‖Φ′k+1(zt−1)‖∗

)p
≤ . . . ≤

(
β‖Φ′k+1(z0)‖∗

)pt
= (βak+1‖F ′(xk)‖∗)p

t

=
(
a

p
p−1
k+1

(
(p+1)Lp

p!

) 1
p−1 ‖F ′(xk)‖∗

)pt
(2.2.32)=

( 1
2
)pt

.

(2.2.36)

Therefore, for

t ≥ logp log2

(
1

βδk+1

)
= 1

log2 p
· log2 log2

(
1

δk+1

(
2·p!·‖F ′(xk)‖∗

(p+1)Lp

) 1
p

)
,

(2.2.37)

it holds ‖Φ′k+1(zt)‖∗ ≤ δk+1. To finish the proof, let us estimate ‖F ′(xk)‖∗
from above. We have

2
3p−2
p

(
(p+1)Lp

p!

) 2
p

Rk(δ)

(2.2.28)
≥ 2

2(p−1)
p

(
(p+1)Lp

p!

) 2
p

k∑
i=1

a2
i ‖F ′(xi)‖2∗

(2.2.32)=
k∑
i=1
‖F ′(xi−1)‖

2(1−p)
p

∗ ‖F ′(xi)‖2∗.

(2.2.38)
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Thus, for every 1 ≤ i ≤ k it holds

‖F ′(xi)‖∗
(2.2.38)
≤ ‖F ′(xi−1)‖ρ∗ · D, (2.2.39)

with D ≡ R1/2
k (δ)

(
(p+1)Lp

p!

) 1
p 2

3p−2
2p , and ρ ≡ p−1

p . Therefore,

‖F ′(xk)‖∗
(2.2.39)
≤ ‖F ′(x0)‖ρ

k

∗ · D1+ρ+ρ2+···+ρk−1

= ‖F ′(x0)‖∗ ·
(
‖F ′(x0)‖ρ

k−1
∗ · D

1−ρk
1−ρ

)
= ‖F ′(x0)‖∗ ·

(
Dp

‖F ′(x0)‖∗

)1−ρk

≤ ‖F ′(x0)‖∗ ·max
{ Dp
‖F ′(x0)‖∗ , 1

}
= max

{
(p+1)Lp2p−1

p!

(
‖x0 − x∗‖+

k∑
i=1

δi

)p
, ‖F ′(x0)‖∗

}
.

Substitution of this bound into (2.2.37) gives (2.2.34).
Let us prove now the rate of convergence for the outer iterations. This

is a direct consequence of Theorem 2.2.10 and the choice (2.2.32) of the
coefficients {ak}k≥1.

Lemma 2.2.12. Let for a given ε > 0,

F (xk)− F ∗ ≥ ε, 1 ≤ k ≤ K. (2.2.40)

Then for every 1 ≤ k ≤ K, we have

F (x̄k)− F ∗ ≤
Lp
(
‖x0−x∗‖+

∑k

i=1
δi
)p+1

k
p+1

2

(p+1)2p−2Vk(ε)
p! , (2.2.41)

where x̄k
def=
∑k

i=1
aixi∑k

i=1
ai

, and Vk(ε) def=
(
‖F ′(x0)‖∗·(‖x0−x∗‖+

∑k

i=1
δi)

ε

) p−1
k

.

Proof. By using the inequality between the arithmetic and geometric means,
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we obtain

Rk(δ)
(2.2.28)
≥ 1

2

k∑
i=1

a2
i ‖F ′(xi)‖2∗

(2.2.32)= 1
8

(
p!

(p+1)Lp

) 2
p−1 k∑

i=1

a2
i

a

2p
p−1
i+1

≥ k
8

(
p!

(p+1)Lp

) 2
p−1

(
k∏
i=1

a2
i

a

2p
p−1
i+1

) 1
k

= k
8

(
p!

(p+1)Lp

) 2
p−1

(
a1
ak+1

) 2p
(p−1)k

(
k∏
i=1

ai

) −2
(p−1)k

≥ k
p+1
p−1

8

(
p!

(p+1)Lp

) 2
p−1

(
a1
ak+1

) 2p
(p−1)k

(
k∑
i=1

ai

) −2
p−1

.

(2.2.42)

Therefore,

F (x̄k)− F ∗ ≤ 1
k∑
i=1

ai

k∑
i=1

ai(F (xi)− F ∗)
(2.2.28)
≤ Rk(δ)

k∑
i=1

ai

(2.2.42)
≤ Rk(δ)

p+1
2

k
p+1

2

(p+1)Lp
p!

(
ak+1
a1

) p
k 8

p−1
2

=
Lp
(
‖x0−x∗‖+

∑k

i=1
δi
)p+1

k
p+1

2

(p+1)2p−2

p!

(
‖F ′(x0)‖∗
‖F ′(xk)‖∗

) p−1
k

,

where the first inequality holds by convexity. At the same time, we have

‖F ′(xk)‖∗ ≥ 〈F ′(xk),xk−x∗〉
‖xk−x∗‖ ≥ F (xk)−F∗

‖xk−x∗‖

(2.2.40)
≥ ε

‖xk−x∗‖

(2.2.28)
≥ ε

‖x0−x∗‖+
∑k

i=1
δi
.

Thus,
(
‖F ′(x0)‖∗
‖F ′(xk)‖∗

) p−1
k ≤ Vk(ε) and we obtain (2.2.41).

Remark 2.2.13. Note that
( 1
ε

) p−1
k = exp

(
p−1
k ln 1

ε

)
. Therefore after k =
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O
(
ln 1

ε

)
iterations, the factor Vk(ε) is bounded by an absolute constant.

Since the local convergence of RCTM is very fast (2.2.34), we can choose
the inner accuracies {δi}i≥1 small enough, to have the right hand side
of (2.2.41) being of the order Õ(1/k

p+1
2 ). Let us present a precise statement.

Theorem 2.2.14. Let δk ≡ c
ks for fixed absolute constants c > 0 and s > 1.

Let for a given ε > 0, we have

F (xk)− F ∗ ≥ ε, 1 ≤ k ≤ K.

Then, for every k such that ln ‖F
′(x0)‖∗R
ε ≤ k ≤ K, we get

F (x̄k)− F ∗ ≤ LpR
p+1

k
p+1

2

(p+1)2p−2 exp(p−1)
p! , (2.2.43)

where
R

def= ‖x0 − x∗‖+ cs
s−1 .

The total number of oracle calls Nk during the first k iterations is bounded
as follows:

Nk ≤ k ·
(

1 + 1
log2 p

log2 log2
2Dks
c

)
,

where
D

def= max
{
R,
(
p!‖F ′(x0)‖∗

(p+1)Lp2p−1

) 1
p

}
.

Proof. First, observe that

k∑
i=1

δi
(1.3.9)
≤ cs

s−1 .

Thus, we obtain (2.2.43) directly from the bound (2.2.41) and by the fact
that

Vk(ε) ≡
(
‖F ′(x0)‖∗R

ε

) p−1
k = exp

(
p−1
k log ‖F

′(x0)‖∗R
ε

)
≤ exp(p− 1),

when k ≥ ln ‖F
′(x0)‖∗R
ε .
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Then,

Nk
(2.2.34)
≤

k∑
i=1

⌈
1

log2 p
log2 log2

2D
δi

⌉
≤ k + 1

log2 p

k∑
i=1

log2 log2
2Dis
c

≤ k + 1
log2 p

k∑
i=1

log2 log2
2Dks
c = k ·

(
1 + 1

log2 p
log2 log2

2Dks
c

)
.

Note that we were able to justify the global performance of the scheme
by using only the local convergence results for the inner method. It is
interesting to compare our approach with the recent results on the path-
following second-order methods [49].

We can drop the logarithmic components in the complexity bounds by
using the hybrid proximal methods (see [100] and [98]), where at each itera-
tion only one step of RCTM is performed. The resulting rate of convergence
there is O(1/k

p+1
2 ), without any extra logarithmic factors. However, this

rate is worse than the rate O(1/kp) provided by the Theorem 2.2.7 for the
primal iterations of RCTM (2.2.11).
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Contraction Technique in
Convex Optimization

For a differentiable function f , we can consider its contraction, which is the
function

x 7→ f(γx+ (1− γ)x̄),

where x̄ is a fixed point (usually the current iterate of a method), and
γ ∈ (0, 1) is a contraction parameter.

Let us denote the new function by g(x) := f(γx + (1 − γ)x̄). Then, its
derivatives are as follows:

Dg(x) = γDf(γx+ (1− γ)x̄),

D2g(x) = γ2D2f(γx+ (1− γ)x̄),
. . .

Dkg(x) = γkDkf(γx+ (1− γ)x̄).

The smoothness characteristics of the objective (i.e. the Lipschitz constants)
are defined by using the derivatives. Hence, we can hope that the smooth-
ness properties of g(·) can be better than those of the initial function. The
result of employing the contracted objective should be combined with the
progress made by an optimization algorithm up to the current iterate x̄.

In this chapter, we investigate this idea by developing new contracting
algorithms for Smooth Convex Optimization. It appears that the contrac-
tion technique is somewhat complementary to the proximal approach.
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Figure 3.1: Contractions of a convex quadratic function.

3.1 Affine-Invariant Contracting-Point
Methods

In the last years, we have seen an increasing interest in new frameworks
for derivation and justification different methods for Convex Optimization,
provided with a worst-case complexity analysis (see, for example, [7, 95,
28, 116, 118, 54, 77, 122, 120]). It turns out that the accelerated proximal
tensor methods [6, 118] can be naturally explained through the framework
of high-order proximal-point schemes [120] requiring a solution to nontrivial
auxiliary problem at every iteration.

This possibility serves as a departure point for the results presented
in this part of the thesis. Indeed, the main drawback of proximal tensor
methods consists in the necessity of using a fixed Euclidean structure for
measuring distances between points. However, the multi-dimensional Taylor
polynomials are defined by directional derivatives, which are affine-invariant
objects. Can we construct a family of tensor methods, which do not depend
on the choice of the coordinate system in the space of variables? Our results
give a positive answer on this question.

Our framework extends the initial results presented in [116], where it
was shown that the classical Frank-Wolfe algorithm can be generalized onto
the case of the composite objective function [114] by using a contraction of
the feasible set towards the current test point. This operation was also used
in [116] for justifying a second-order method with contraction, which looks
similar to the classical trust-region schemes [30], but with asymmetric trust
region.

We significantly improve the convergence rates for the second-order
methods, and extend the contraction technique onto the whole family of
tensor methods. However, in the vein of [120], we start first from analyz-
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ing a conceptual scheme solving at each iteration an auxiliary optimization
problem formulated in terms of the initial objective function.

In Section 3.1.1, we present a general framework of Contracting-Point
methods. We provide two conceptual variants of our scheme for different
conditions of inexactness for the solution to the subproblem: using a point
with small residual in the function value, and another one using a stronger
condition which involves the gradients. For both schemes we establish global
bounds for the functional residual of the initial problem. These bounds lead
to global convergence guarantees under a suitable choice of the parameters.
For the scheme with the second condition of inexactness, we also provide a
computable accuracy certificate. It can be used to estimate the functional
residual directly within the method.

Section 3.1.2 contains smoothness conditions, which are useful to analyse
affine-invariant high-order schemes. We present some basic inequalities and
examples, related to the new definitions.

In Section 3.1.3, we show how to implement one iteration of our methods
by computing an (inexact) affine-invariant tensor step. For the methods of
degree p ≥ 1, we establish global convergence in the functional residual
of the order O(1/kp), where k is the iteration counter. For p = 1, this
recovers well-known result about global convergence of the classical Frank-
Wolfe algorithm [52, 116]. For p = 2, we obtain the new algorithm called
Contracting-Point Newton Method. Our analysis also works in the case,
when the corresponding subproblem is solved inexactly.

In Section 3.1.4, we discuss our results and highlight some open questions
for the future research.
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3.1.1 Conceptual Contracting-Point Methods

We are interested in solving the composite convex minimization problem,
with an additional assumption that the feasible set is bounded. Hence,

F ∗
def= min

x∈domψ

{
F (x) = f(x) + ψ(x)

}
,

where ψ : E → R ∪ {+∞} is a simple proper closed convex function with
bounded domain, and function f(x) is convex and p (≥ 1) times continuously
differentiable at every point x ∈ domψ ⊆ dom f .

In this section, we propose a conceptual optimization scheme for solving
this problem. At each step of our method, we choose a contracting coeffi-
cient γk ∈ (0, 1] restricting the nontrivial part of our objective f(·) onto a
contracted domain. At the same time, the domain for the composite part
remains unchanged.

Namely, at point xk ∈ domψ, define

Sk(y) def= γkψ
(
xk + 1

γk
(y − xk)

)
, y = xk + γk(v − xk), v ∈ domψ.

Note that Sk(y) = γkψ(v). Consider the following exact iteration:

v∗k+1 ∈ Argmin
v

{
f(y) + Sk(y) :

y = (1− γk)xk + γkv, v ∈ domψ
}
,

x∗k+1 = (1− γk)xk + γkv
∗
k+1.

(3.1.1)

Of course, when γk = 1, exact step from (3.1.1) solves the initial problem.
However, we are going to look at the inexact minimizer. In this case, the
choice of {γk}k≥0 should take into account the efficiency of solving the
auxiliary subproblem.

Denote by Fk(·) the objective in the auxiliary problem (3.1.1), that is

Fk(y) def= f(y) + Sk(y), y = (1− γk)xk + γkv, v ∈ domψ.

We are going to use the point x̄k+1 = (1−γk)xk+γkv̄k+1 with v̄k+1 ∈ domψ

having a small residual in the function value:

Fk(x̄k+1)− Fk(x∗k+1) ≤ δk+1, (3.1.2)

with some fixed δk+1 ≥ 0.
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Figure 3.2: Iteration of the conceptual Contracting-Point method for differ-
ent values of contracting coefficient γk, minimizing f(·) over segment domψ ≡
[−30, 30].

Lemma 3.1.1. For all k ≥ 0 and v ∈ domψ, we have

F (x̄k+1) ≤ (1− γk)F (xk) + γkF (v) + δk+1. (3.1.3)

Proof. Indeed, for any v ∈ domψ, we have

Fk(x̄k+1)
(3.1.2)
≤ Fk(x∗k+1) + δk+1

(3.1.1)
≤ f((1− γk)xk + γkv) + Sk((1− γk)xk + γkv) + δk+1

≤ (1− γk)f(xk) + γkf(v) + γkψ(v) + δk+1.

Therefore,

F (x̄k+1) = Fk(x̄k+1) + ψ(x̄k+1)− γkψ(v̄k+1)

≤ (1− γk)f(xk) + γkF (v) + δk+1 + ψ(x̄k+1)− γkψ(v̄k+1)

≤ (1− γk)F (xk) + γkF (v) + δk+1.
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Let us write down our method in algorithmic form.

Conceptual Contracting-Point Method, I

Initialization. Choose x0 ∈ domψ.

Iteration k ≥ 0.

1: Choose γk ∈ (0, 1].

2: For some δk+1 ≥ 0, find x̄k+1 satisfying (3.1.2).

3: If F (x̄k+1) ≤ F (xk), then set xk+1 = x̄k+1.
Else choose xk+1 = xk.

(3.1.4)

In Step 3 of this method, we add a simple test for ensuring monotonicity
in the function value. This step is optional.

It is more convenient to describe the rate of convergence of this scheme
with respect to another sequence of parameters. Let us introduce an ar-
bitrary sequence of positive numbers {ak}k≥1 and denote Ak

def=
∑k
i=1 ai.

Then, we can define the contracting coefficients as follows

γk
def= ak+1

Ak+1
. (3.1.5)

Theorem 3.1.2. For all points of sequence {xk}k≥0, generated by algo-
rithm (3.1.4), we have the following relation:

AkF (xk) ≤ AkF
∗ +Bk, with Bk

def=
∑k
i=1Aiδi. (3.1.6)

Proof. Indeed, for k = 0, we have Ak = 0, Bk = 0. Hence, (3.1.6) is valid.
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3.1. Affine-Invariant Contracting-Point Methods

Assume it is valid for some k ≥ 0. Then

Ak+1F (xk+1)
Step 3
≤ Ak+1F (x̄k+1)

≤ Ak+1

(
(1− γk)F (xk) + γkF

∗ + δk+1

)
(3.1.5)= AkF (xk) + ak+1F

∗ +Ak+1δk+1

(3.1.6)
≤ Ak+1F

∗ +Bk+1. �

From bound (3.1.6), we can see, that

F (xk)− F ∗ ≤ 1
Ak

∑k
i=1Aiδi, k ≥ 1. (3.1.7)

Hence, the actual rate of convergence of method (3.1.4) depends on the
growth of coefficients {Ak}k≥1 relatively to the level of inaccuracies {δk}k≥1.
Potentially, this rate can be arbitrarily high. Since we did not assume any-
thing yet about our objective function, this means that we just retransmitted
the complexity of solving the initial problem onto a lower level, the level of
computing the point x̄k+1, satisfying the condition (3.1.2). We are going to
discuss different possibilities for that in Sections 3.1.3 and 4.2.

Now, let us endow method (3.1.4) with a computable accuracy certificate.
For this purpose, for a sequence of given test points {x̄k}k≥1 ⊂ domψ, we
introduce the following Estimating Function (see [117]):

ϕk(v) def=
k∑
i=1

ai
[
f(x̄i) + 〈∇f(x̄i), v − x̄i〉+ ψ(v)

]
.

By convexity of f(·), we have AkF (v) ≥ ϕk(v) for all v ∈ domψ. Hence,
for all k ≥ 1, we can get the following bound for the functional residual:

F (xk)− F ∗ ≤ `k
def= F (xk)− 1

Ak
ϕ∗k,

ϕ∗k
def= min

v∈domψ
ϕk(v).

(3.1.8)

The complexity of computing the value of `k usually does not exceed the
complexity of computing the next iterate of our method since it requires just
one call of the linear minimization oracle. Let us show that an appropriate
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rate of decrease of the estimates `k can be guaranteed by sufficiently accurate
steps of the method (3.1.1).

For that, we need a stronger condition on point x̄k+1, that is, for arbi-
trary v ∈ domψ

〈∇f(x̄k+1), v − v̄k+1〉+ ψ(v) ≥ ψ(v̄k+1)− 1
γk
δk+1,

x̄k+1 = (1− γk)xk + γkv̄k+1,

(3.1.9)

with some δk+1 ≥ 0. Note that, for δk+1 = 0, condition (3.1.9) ensures the
exactness of the corresponding step of method (3.1.1).

Let us consider now the following algorithm.

Conceptual Contracting-Point Method, II

Initialization. Choose x0 ∈ domψ.

Iteration k ≥ 0.

1: Choose γk ∈ (0, 1].

2: For some δk+1 ≥ 0, find x̄k+1 satisfying (3.1.9).

3: If F (x̄k+1) ≤ F (xk), then set xk+1 = x̄k+1.
Else choose xk+1 = xk.

(3.1.10)

This scheme differs from the previous method (3.1.4) only in the char-
acteristic condition (3.1.9) for the next test point.

Theorem 3.1.3. For all points of the sequence {xk}k≥0, generated by al-
gorithm (3.1.10), we have

ϕ∗k ≥ AkF (xk)−Bk, k ≥ 0. (3.1.11)

Proof. For k = 0, relation (3.1.11) is valid since both sides are zeros. Assume
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that (3.1.11) holds for some k ≥ 0. Then, for any v ∈ domψ, we have

ϕk+1(v) ≡ ϕk(v) + ak+1
[
f(x̄k+1) + 〈∇f(x̄k+1), v − x̄k+1〉+ ψ(v)

]
(3.1.11)
≥ AkF (xk)−Bk

+ ak+1
[
f(x̄k+1) + 〈∇f(x̄k+1), v − x̄k+1〉+ ψ(v)

]
(∗)
≥ Ak+1

[
f(x̄k+1) + 〈∇f(x̄k+1), ak+1v+Akxk

Ak+1
− x̄k+1〉

]
+ Akψ(xk) + ak+1ψ(v)−Bk

= Ak+1f(x̄k+1) + ak+1
[
〈∇f(x̄k+1), v − v̄k+1〉+ ψ(v)

]
+ Akψ(xk)−Bk

(3.1.9)
≥ Ak+1f(x̄k+1) + ak+1ψ(v̄k+1) +Akψ(xk)−Bk+1

(∗∗)
≥ Ak+1F (x̄k+1)−Bk+1

Step 3
≥ Ak+1F (xk+1)−Bk+1.

Here, the inequalities (∗) and (∗∗) are justified by convexity of f(·) and ψ(·),
correspondingly. Thus, (3.1.11) is proved for all k ≥ 0.

Combining now (3.1.8) with (3.1.11), we obtain

F (xk)− F ∗ ≤ `k ≤ 1
Ak

∑k
i=1Aiδi, k ≥ 1. (3.1.12)

We see that the right hand side in (3.1.12) is the same, as that one in (3.1.7).
However, this convergence is stronger, since it provides a bound for the
accuracy certificate `k.
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3.1.2 Affine-Invariant High-Order Smoothness
Condition

We are going to describe the efficiency of solving the auxiliary problem
in (3.1.1). For that we use affine-invariant characteristics of variation of
function f(·) over the compact convex sets. For a convex set Q, positive
integer p ≥ 1, and ν ∈ [0, 1], define

∆(p,ν)
Q (f) def= sup

x,v∈Q,
t∈(0,1]

1
tp+ν

∣∣∣f(x+ t(v − x))− f(x)

−
p∑
i=1

ti

i!D
if(x)[v − x]i

∣∣∣.
(3.1.13)

Note that for p = 1 and ν = 1 this characteristic was considered in [73] for
the analysis of the classical Frank-Wolfe algorithm.

It is clear that for any 0 ≤ ν1 < ν2 ≤ 1, we have

∆(p,ν1)
Q (f) ≤ ∆(p,ν2)

Q (f).

In many situations, it is more convenient to use an upper bound for
∆(p,1)
Q (f), which is a full variation of the (p+ 1)th derivative over the given

set Q:

V(p+1)
Q (f) def= sup

x,y,v∈Q

∣∣∣Dp+1f(y)[v − x]p+1
∣∣∣. (3.1.14)

Indeed, by Taylor formula, we have

1
tp+1

[
f(x+ t(v − x))− f(x)−

p∑
i=1

ti

i!D
if(x)[v − x]i

]

= 1
p!

1∫
0

(1− τ)pDp+1f(x+ τt(v − x))[v − x]p+1dτ.

Hence,
∆(p,1)
Q (f) ≤ 1

(p+1)!V
(p+1)
Q (f). (3.1.15)

Sometimes, in order to exploit a primal-dual structure of the problem,
we need to work with the dual objects (gradients), as in method (3.1.10).
In this case, we need to characterize the variation of the gradient ∇f(·) over
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the set Q:

Γ(p,ν)
Q (f) def= sup

x,y,v∈Q,
t∈(0,1]

1
tp+ν−1

∣∣∣〈∇f(x+ t(v − x))−∇f(x)

−
p∑
i=2

ti−1

(i−1)!D
if(x)[v − x]i−1, v − y〉

∣∣∣.
(3.1.16)

Since

1
t

[
f(x+ t(v − x))− f(x)−

p∑
i=1

ti

i!D
if(x)[v − x]i

]

= 1
t

[ 1∫
0
〈∇f(x+ τt(v − x)), t(v − x)〉dτ −

p∑
i=1

ti

i!D
if(x)[v − x]i

]

=
1∫
0
〈∇f(x+ τt(v − x))−

p∑
i=1

(τt)i−1

(i−1)! D
if(x)[v − x]i−1, v − x〉dτ,

we conclude that

∆(p,ν)
Q (f) ≤ 1

p+νΓ(p,ν)
Q (f). (3.1.17)

At the same time, by Taylor formula, we get

1
tp

[
∇f(x+ t(v − x))−∇f(x)−

p∑
i=2

ti−1

(i−1)!D
if(x)[v − x]i−1

]

= 1
(p−1)!

1∫
0

(1− τ)p−1Dp+1f(x+ τt(v − x))[v − x]pdτ.

(3.1.18)

Therefore, again we have an upper bound in terms of the variation of the
(p+ 1)th derivative, that is

Γ(p,1)
Q (f)

(3.1.18)
≤ 1

p! sup
x,y,z,v∈Q

∣∣∣〈Dp+1f(z)[v − x]p, v − y〉
∣∣∣

≤ 2(p+1)p
(p!)2 V(p+1)

Q (f).

(3.1.19)

See Proposition A.1 in Appendix for the proof of the last inequality. Hence,
the value of V(p+1)

Q (f) is the biggest one. However, in many cases it is more
convenient.
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Example 3.1.4. Let ‖·‖ be an arbitrary norm defined on the primal vector
space E, and let Q ⊂ E be a compact convex set with diameter

D = D‖·‖(Q) def= max
x,y∈Q

‖x− y‖ < +∞.

Let W be an open set containing it: Q ⊂W ⊆ E. Assume that function
f is (p+ 1)-times continuously differentiable on W , and its p-th derivative
is Lipschitz continuous on W (w.r.t. ‖ · ‖) with constant Lp:

‖Dpf(x)−Dpf(y)‖

def= max
h1,...,hp∈E

{
|Dpf(x)[h1, . . . , hp]−Dpf(y)[h1, . . . , hp]| : ∀i(‖hi‖ ≤ 1)

}
≤ Lp‖y − x‖, ∀x, y ∈W.

Then, we have
V(p+1)
Q (f) ≤ LpDp+1.

Consequently,

∆(p,1)
Q

(3.1.15)
≤ 1

(p+1)!V
(p+1)
Q (f) ≤ 1

(p+1)!LpD
p+1

and

Γ(p,1)
Q (f)

(3.1.19)
≤ 2(p+1)p

(p!)2 V(p+1)
Q (f) ≤ 2(p+1)p

(p!)2 LpDp+1. �

Example 3.1.5. Assume in the previous example that the p-th derivative
of f is Hölder continuous of degree ν ∈ [0, 1] on Q with some constant Hp,ν :

‖Dpf(x)−Dpf(y)‖ ≤ Hp,ν‖x− y‖ν , ∀x, y ∈ Q.

Then, we have
Γ(p,ν)
Q (f) ≤ 1

(p−1)!Hp,νD
p+ν

and hence

∆(p,ν)
Q

(3.1.17)
≤ 1

p+νΓ(p,ν)
Q (f) ≤ 1

(p−1)!·(p+ν)Hp,νD
p+ν . �

In some situations we can obtain much better estimates.
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Example 3.1.6. Let A � 0, and f(x) = 1
2 〈Ax, x〉 with

x ∈ Sn
def= {x ∈ Rn+ :

n∑
i=1

x(i) = 1}.

For measuring distances in the standard simplex, we choose `1-norm:

‖h‖ =
n∑
i=1
|h(i)|, h ∈ Rn.

In this case, D = D||·‖(Sn) = 2, and L1 = max
1≤i≤n

A(i,i). On the other hand,

V(2)
Sn (f) = max

1≤i,j≤n
〈A(ei − ej), ei − ej〉

≤ max
1≤i,j≤n

[2〈Aei, ei〉+ 2〈Aej , ej〉] = 4L1,

where ek denotes the kth coordinate vector in Rn. Thus, V(2)
Sn ≤ L1D2.

However, for some matrices, the value V(2)
Sn (f) can be much smaller than

L1D2. Indeed, let A = aaT for some a ∈ Rn. Then L1 = max
1≤i≤n

(a(i))2, and

V(2)
Sn (f) =

[
max

1≤i≤n
a(i) − min

1≤i≤n
a(i)
]2
,

which can be much smaller than 4L1.

Example 3.1.7. Let given vectors a1, . . . , am span the whole Rn. Consider
the objective

f(x) = log
(

m∑
k=1

e〈ak,x〉
)
, x ∈ Sn.

Then, it holds (see Example 1.3.5 for the first inequality):

〈∇2f(x)h, h〉 ≤ max
1≤k,l≤m

〈ak − al, h〉2

≤ max
1≤k,l≤m

‖ak − al‖2∞‖h‖21, h ∈ Rn.

Therefore, in `1-norm we have L1 = max
1≤k,l≤m

max
1≤i≤n

[
a

(i)
k − a

(i)
l

]2
. At the
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same time,

V(2)
Sn (f) = sup

x∈Sn
max

1≤i,j≤n
〈∇2f(x)(ei − ej), ei − ej〉

≤ max
1≤k,l≤m

max
1≤i,j≤n

[(
a

(i)
k − a

(j)
k

)
−
(
a

(i)
l − a

(j)
l

)]2
.

The last expression is the maximal difference between variations of the co-
ordinates. It can be much smaller than L1D2 = 4L1.

Moreover, we have (see Example 2.1.1):

|D3f(x)[h]3| ≤ max
1≤k,l≤m

|〈ak − al, h〉|3, h ∈ Rn.

Hence, we obtain

V(3)
Sn (f) ≤ max

1≤k,l≤m
max

1≤i,j≤n

∣∣∣(a(i)
k − a

(j)
k

)
−
(
a

(i)
l − a

(j)
l

)∣∣∣3. �

3.1.3 Contracting-Point Tensor Methods
In this section, we show how to implement Contracting-Point Methods, by
using affine-invariant tensor steps. At each iteration of (3.1.1), we approx-
imate f(·) by its Taylor’s polynomial of degree p ≥ 1 around the current
point xk:

f(y) ≈ Ωp(f, xk; y) def= f(xk) +
p∑
i=1

1
i!D

if(xk)[y − xk]i.

Thus, we need to solve the following auxiliary problem:

min
v

{
Mk(y) def= Ωp(f, xk; y) + Sk(y) :

y = (1− γk)xk + γkv, v ∈ domψ
}
.

(3.1.20)

Note that this global minimum M∗k is well defined since domψ is bounded.
Let us take

x̄k+1 = (1− γk)xk + γkv̄k+1,

where v̄k+1 is an inexact solution to (3.1.20) in the following sense:

Mk(x̄k+1)−M∗k ≤ ξk+1. (3.1.21)
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Then, this point serves as a good candidate for the inexact step of our
method.

Theorem 3.1.8. Let ξk+1 ≤ cγp+νk , for some arbitrary constants c ≥ 0 and
ν ∈ [0, 1]. Then

Fk(x̄k+1)− F ∗k ≤ δk+1,

for δk+1 = (c+ 2∆(p,ν)
domψ(f))γp+νk .

Proof. Indeed, for y = xk + γk(v − xk) with arbitrary v ∈ domψ, we have

Fk(y) = f(y) + Sk(y)

(3.1.13)
≥ Ωp(f, xk; y) + Sk(y)−∆(p,ν)

domψ(f)γp+νk

(3.1.21)
≥ Ωp(f, xk; x̄k+1) + Sk(x̄k+1)− (c+ ∆(p,ν)

domψ(f))γp+νk

(3.1.13)
≥ f(x̄k+1) + Sk(x̄k+1)− (c+ 2∆(p,ν)

domψ(f))γp+νk

= Fk(x̄k+1)− δk+1. �

Thus, we come to the following minimization scheme.

Contracting-Point Tensor Method, I

Initialization. Choose x0 ∈ domψ, c ≥ 0.

Iteration k ≥ 0.

1: Choose γk ∈ (0, 1].

2: For some ξk+1 ≤ cγp+1
k , find x̄k+1 satisfying (3.1.21).

3: If F (x̄k+1) ≤ F (xk), then set xk+1 = x̄k+1.
Else choose xk+1 = xk.

(3.1.22)
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Note that we do not fix any particular ν in our scheme, because we want
to have a universal method that does not depend on the degree of Hölder
continuity.

For p = 1 and ψ(·) being an indicator function of a compact convex set,
this is the well-known Frank-Wolfe algorithm [52]. Inexact version of the
Frank-Wolfe algorithm was analysed in [73].

Straightforward consequence of our observations is the following

Theorem 3.1.9. Let γk = p+1
k+p+1 . Then, for all iterations {xk}k≥1 gener-

ated by method (3.1.22), we have

F (xk)− F ∗ ≤ 6(p+1)p+ν

2−ν · (c+ 2∆(p,ν)
domψ) · k−(p+ν−1), ∀ν ∈ [0, 1].

Proof. Let us choose Ak = k ·(k+1) · . . . ·(k+p). Then, ak+1 = Ak+1−Ak =
(p+1)Ak+1
k+p+1 , and

γk = ak+1
Ak+1

= p+1
k+p+1 .

Combining (3.1.7) with Theorem 3.1.8, we have

F (xk)− F ∗ ≤ (c+2∆(p,ν)
domψ

(f))
Ak

k∑
i=1

ap+ν
i

Ap+ν−1
i

, k ≥ 1.

Since

1
Ak

k∑
i=1

ap+ν
i

Ap+ν−1
i

= 1
Ak

k∑
i=1

(p+1)p+νAi
(i+p)p+ν ≤ (p+1)p+ν

Ak

k∑
i=1

(i+ p)1−ν

≤ (p+1)p+ν

Ak

k+1∫
0

(τ + p)1−νdτ = (p+1)p+ν(k+p+1)2−ν

(2−ν)Ak

≤ 6(p+1)p+ν

2−ν · (k+p+1)2−ν

kp−1·(k+p+1)2 ≤ 6(p+1)p+ν

2−ν · 1
kp+ν−1 ,

we get the required inequality.
Hence, in order to find an ε-solution to the problem: F (xK) − F ∗ ≤ ε,

it is enough to do

K = inf
ν∈[0,1]

[
6(p+1)p+ν

2−ν · (c+2∆(p,ν)
domψ

(f))
ε

] 1
p+ν−1

iterations of the method. And an appropriate choice of parameter c is the
value ∆(p,ν)

domψ(f) for some ν ∈ [0, 1]. In practice, it seems reasonable to use
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3.1. Affine-Invariant Contracting-Point Methods

a small constant for the value of c.
It is important that the required level of accuracy ξk+1 for solving the

subproblem is not static: it is changing with iterations. Indeed, from the
practical perspective, there is no need to use high accuracy during the first
iterations, but it is natural to improve our precision while approaching the
optimum. Inexact proximal-type tensor methods with dynamic inner accu-
racies are studied in Section 4.1 of Chapter 4.

Let us note that the objectiveMk(y) from (3.1.20) is generally nonconvex
for p ≥ 3, and it may be nontrivial to look for its global minimum. Because
of that, we propose an alternative condition for the next point. It requires
just to find an inexact stationary point of Ωp(f, xk; y). That is a point x̄k+1,
satisfying, for all v ∈ domψ

〈∇Ωp(f, xk; x̄k+1), v − v̄k+1〉+ ψ(v) ≥ ψ(v̄k+1)− 1
γk
ξk+1,

x̄k+1 = (1− γk)xk + γkv̄k+1,

(3.1.23)

for some tolerance value ξk+1 ≥ 0.

Theorem 3.1.10. Let point x̄k+1 satisfy condition (3.1.23) with

ξk+1 ≤ cγp+νk ,

for some constants c ≥ 0 and ν ∈ [0, 1]. Then it satisfies inexact condi-
tion (3.1.9) of the Conceptual Contracting-Point Method with

δk+1 = (c+ Γ(p,ν)
domψ(f))γp+νk .

Proof. Indeed, for any v ∈ domψ, we have

〈∇f(x̄k+1), v − v̄k+1〉+ ψ(v)

= 〈∇Ωp(f, xk; x̄k+1), v − v̄k+1〉+ ψ(v)

+ 〈∇f(x̄k+1)− Ωp(f, xk; x̄k+1), v − v̄k+1〉

(3.1.23)
≥ ψ(v̄k+1)− cγp+ν−1

k + 〈∇f(x̄k+1)− Ωp(f, xk; x̄k+1), v − v̄k+1〉

(3.1.16)
≥ ψ(v̄k+1)− (c+ Γ(p)

domψ(f))γp+ν−1
k = ψ(v̄k+1)− 1

γk
δk+1. �
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Now, changing inexactness condition (3.1.21) in method (3.1.22) by con-
dition (3.1.23), we come to the following algorithm.

Contracting-Point Tensor Method, II

Initialization. Choose x0 ∈ domψ, c ≥ 0.

Iteration k ≥ 0.

1: Choose γk ∈ (0, 1].

2: For some ξk+1 ≤ cγp+1
k , find x̄k+1 satisfying (3.1.23).

3: If F (x̄k+1) ≤ F (xk), then set xk+1 = x̄k+1.

Else choose xk+1 = xk.

(3.1.24)

Its convergence analysis is straightforward.

Theorem 3.1.11. Let Ak
def= k · (k + 1) · . . . · (k + p), and consequently

γk = p+1
k+p+1 . Then, for all iterations {xk}k≥1 of method (3.1.24), we have

F (xk)− F ∗ ≤ `k ≤ 6(p+1)p+ν

2−ν · (c+ Γ(p)
domψ(f)) · k−(p+ν−1),

for any ν ∈ [0, 1].

Proof. Combining inequality (3.1.12) with the statement of Theorem 3.1.10,
we have

F (xk)− F ∗ ≤ `k ≤
c+Γ(p)

domψ
(f)

Ak

k∑
i=1

ap+ν
i

Ap+ν−1
i

, k ≥ 1.

It remains to use the same reasoning, as in the proof of Theorem 3.1.9.
To finish this section, let us discuss the affine invariance of our new

methods. In the exact form, iterations of the Contracting-Point Tensor
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Method can be rewritten as follows, for k ≥ 0:

xk+1 ∈ Argmin
x

{
Ωp(f, xk;x) + γkψ(xk + 1

γk
(x− xk))

}
, (3.1.25)

when applied to the composite objective F (x) = f(x) + ψ(x).

Let A : E→ E be a nondegenerate linear operator. Let b ∈ E be a fixed
vector. Consider the new functions

f̃(y) := f(Ay + b), ψ̃(y) := ψ(Ay + b), y ∈ E.

Note that, for any h ∈ E,

Dpf̃(y)[h]p = Dpf(Ay + b)[Ah]p. (3.1.26)

We can prove the following simple statement.

Proposition 3.1.12. Let sequence {xk}k≥0 be generated by method (3.1.25).
Consider the corresponding {yk}k≥0 defined by

yk := A−1(xk − b), k ≥ 0.

Then the latter sequence satisfies the iterations of the Contracting-Point
Tensor Method applied to the new objective F̃ (y) := f̃(y) + ψ̃(y). Thus

yk+1 ∈ Argmin
y

{
Ωp(f̃ , yk; y) + γkψ̃(yk + 1

γk
(y − yk))

}
. (3.1.27)

Proof. Let us fix arbitrary y ∈ E. Set x = Ay + b. Then,

Ωp(f̃ , yk; y) = f̃(yk) +
p∑
i=1

1
i!D

if̃(yk)[y − yk]i

(3.1.26)= f(Ayk + b) +
p∑
i=1

1
i!D

if(Ayk + b)[A(y − yk)]i

= f(xk) +
p∑
i=1

1
i!D

if(xk)[x− xk]i

= Ωp(f, xk;x).
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For the composite term, we have

ψ̃(yk + 1
γk

(y − yk)) = ψ(A(yk + 1
γk

(y − yk)) + b)

= ψ(xk + 1
γk

(x− xk)).

Hence,

Ωp(f̃ , yk; yk+1) + γkψ̃(yk + 1
γk

(yk+1 − yk))

= Ωp(f, xk;xk+1) + γkψ(xk + 1
γk

(xk+1 − xk))

(3.1.25)
≤ Ωp(f, xk;x) + γkψ(xk + 1

γk
(x− xk))

= Ωp(f̃ , yk; y) + γkψ̃(yk + 1
γk

(y − yk)),

which justifies (3.1.27).
We see that the sequence generated by the method is invariant with

respect to affine transformations of variables.

3.1.4 Discussion

We have presented a new general framework of Contracting-Point methods,
which can be used for developing affine-invariant optimization algorithms
of different order. For the methods of order p ≥ 1, we prove the following
global convergence rate:

F (xk)− F ∗ ≤ O
(
1/kp

)
, k ≥ 1.

This is the same rate, as that of the basic high-order Proximal-Point scheme
[120]. However, the methods from this section are free from using the norms
or any other characteristic parameters of the problem. This nice property
makes Contracting-Point methods favourable for solving optimization prob-
lems over the sets with a non-Euclidean geometry (e.g. over the simplex or
over a general convex polytope).

At the same time, it is known that in Euclidean case, the prox-type
methods can be accelerated, achieving O(1/kp+1) global rate of conver-
gence [6, 118, 120]. Using additional one-dimensional search at each iter-
ation, this rate can be improved up to O(1/k

3p+1
2 ) (see [54, 120]). The
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3.2. Global Lower Second-Order Models

latter rate is shown to be optimal [4, 117]. To the best of our knowledge,
the lower bounds for high-order methods in general non-Euclidean case re-
main unknown. However, the worst-case oracle complexity of the classical
Frank-Wolfe algorithm (the case p = 1 in our framework) is proven to be
near-optimal for smooth minimization over ‖ · ‖∞-balls [67].

Another open question is a possibility of efficient implementation of our
methods for the case p ≥ 3. In absence of an explicit regularizer (contrary
to the prox-type methods), the subproblem in (3.1.20) can be nonconvex.
Hence, it seems hard to find its global minimizer. We hope that for some
problem classes, it is still feasible to satisfy the inexact stationarity condi-
tion (3.1.23) by a reasonable amount of computations. We keep this question
for further investigation.

3.2 Global Lower Second-Order Models
We have seen in Section 3.1.3 that one iteration of the Contracting-Point
method can be implemented by using the p-th order Taylor’s approximation
of the smooth part of the objective. For p = 2, this results in a new second-
order optimization scheme, called Contracting Newton Method.

This algorithm possesses the global convergence guarantee; it needs
O
(
ε−1/2) second-order oracle calls to solve the composite problem with

bounded domain up to ε-accuracy in the functional residual (Theorem 3.1.9).
This is the same rate as that of the Cubic Newton in a general convex case.

There are several differences between these two algorithms though. The
Cubic Newton Method uses a global upper approximation model, which
is the second-order Taylor’s polynomial augmented by a cubic term. The
regularizer is the third power of the Euclidean norm, and thus the method is
no longer affine-invariant. However, the Cubic Newton has the global linear
rate in the uniformly convex case (Section 2.1), and the local superlinear
convergence (Section 2.2).

At the same time, the Contracting Newton Method is affine-invariant.
It does not depend on a particular norm and the corresponding Lipschitz
constants. In this part of the thesis, we deeply investigate the properties of
the contracting second-order schemes.

First, we develop a new global second-order lower model of the objective
function, introduced in Section 3.2.1.

Then, we provide the Contracting Newton Method with a new interpre-
tation, incorporating this model into optimization schemes (Section 3.2.2).
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For convex functions with a Hölder continuous Hessian of degree ν ∈ [0, 1]
(w.r.t. an arbitrary norm) we re-establish a global convergence rate for
our algorithm of the order O(1/k1+ν). When the composite component is
strongly convex, we show O(1/k2+2ν) global rate for a universal scheme,
and global linear rate if the parameters of the problem class are known. We
also provide different trust-region interpretations for our method.

In Section 3.2.3, we present aggregated second-order models, accumu-
lating information into quadratic Estimating Function. Based on this, we
develop an alternative optimization process, called Aggregating Newton
Method. For this algorithm, we establish the global convergence of the
same order O(1/k1+ν) as for the Contracting Newton Method in the gen-
eral convex case.

Section 3.2.4 contains numerical experiments. In Section 3.2.5, we dis-
cuss our results.

Recall that our goal is to solve the composite convex minimization prob-
lem:

min
x∈domψ

{
F (x) = f(x) + ψ(x)

}
.

Let us fix an arbitrary (possibly non-Euclidean) norm ‖ · ‖ on E. We denote
by D the corresponding diameter of domψ:

D
def= sup

x,y∈domψ
‖x− y‖. (3.2.1)

In this section, our main assumption on the problem is that domψ is
bounded:

D < +∞.

The most important example of ψ is {0,+∞}-indicator of a simple com-
pact convex set Q = domψ. In particular, for a ball in ‖ · ‖p-norm with
p ≥ 1 on E := Rn, this is

ψ(x) =

0, ‖x‖p :=
(∑n

i=1 |x(i)|p
)1/p

≤ D
2 ,

+∞, else.
(3.2.2)

From the machine learning perspective, D is usually considered as a regu-
larization parameter in this setting.

Having fixed the norm ‖ · ‖ for the primal space, the dual norm can be
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defined in the standard way,

‖s‖∗
def= max

h∈E

{
〈s, h〉 : ‖h‖ ≤ 1

}
, s ∈ E∗.

The dual norm is necessary for measuring the size of the gradients. For
a linear operator A : E → E∗, we use the corresponding induced operator
norm, defined as

‖A‖ def= max
h∈E

{
‖Ah‖∗ : ‖h‖ ≤ 1

}
.

3.2.1 Second-Order Lower Model of Objective
Function

To characterize the complexity of our problem, assume that the Hessian of
f is Hölder continuous of degree ν ∈ [0, 1] on domψ, i.e., that

‖∇2f(x)−∇2f(y)‖ ≤ Hν‖x− y‖ν , ∀x, y ∈ domψ. (3.2.3)

The actual parameters of this problem class may be unknown. However,
we assume that for some ν ∈ [0, 1] inequality (3.2.3) is satisfied with corre-
sponding constant 0 ≤ Hν < +∞. The direct consequence of (3.2.3) is the
following global bounds for Taylor’s approximation, for all x, y ∈ domψ

‖∇f(y)−∇f(x)−∇2f(x)(y − x)‖∗ ≤ Hν‖y−x‖1+ν

1+ν , (3.2.4)

|f(y)− f(x)− 〈∇f(x), y − x〉 − 1
2 〈∇

2f(x)(y − x), y − x〉|

≤ Hν‖y−x‖2+ν

(1+ν)(2+ν) .

(3.2.5)

Recall, that in addition to (3.2.3), we assume that f is convex:

f(y) ≥ f(x) + 〈∇f(x), y − x〉, x, y ∈ domψ. (3.2.6)

Employing both smoothness and convexity, we are able to enhance this
global lower bound, as follows.
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Lemma 3.2.1. For all x, y ∈ domψ and t ∈ [0, 1], it holds

f(y) ≥ f(x) + 〈∇f(x), y − x〉+ t
2 〈∇

2f(x)(y − x), y − x〉

− t1+νHν‖y−x‖2+ν

(1+ν)(2+ν) .

(3.2.7)

Proof. Let us prove the following bound, for all x, y ∈ domψ and t ∈ [0, 1]

〈∇f(y)−∇f(x), y − x〉

≥ t〈∇2f(x)(y − x), y − x〉 − t1+νHν‖y−x‖2+ν

1+ν .

(3.2.8)

For t = 1 it follows from (3.2.4). Therefore, we may assume that t < 1. Let
us take zt

def= x+ t(y − x). Then, by convexity of f , we have

〈∇f(y), y − x〉 = 1
1−t 〈∇f(y), y − zt〉

≥ 1
1−t 〈∇f(zt), y − zt〉 = 〈∇f(zt), y − x〉.

Now, by Hölder continuity of the Hessian we get

〈∇f(zt), y − x〉

(3.2.4)
≥ 〈∇f(x), y − x〉+ 〈∇2f(x)(zt − x), y − x〉 − Hν‖zt−x‖

1+ν‖y−x‖
1+ν

= 〈∇f(x), y − x〉+ t〈∇2f(x)(y − x), y − x〉 − t1+νHν‖y−x‖2+ν

1+ν .

Thus we prove (3.2.8). Then, the claim of the lemma can be obtained by
simple integration:

f(y)− f(x)− 〈∇f(x), y − x〉

=
1∫
0
〈∇f(zτ )−∇f(x), y − x〉dτ

(3.2.8)
≥

1∫
0
tτ〈∇2f(x)(y − x), y − x〉 − (tτ)1+νHν‖y−x‖2+ν

1+ν dτ

= t
2 〈∇

2f(x)(y − x), y − x〉 − t1+νHν‖y−x‖2+ν

(1+ν)(2+ν) . �
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Note that the right-hand side of (3.2.7) is concave in t ∈ [0, 1], and for
t = 0 we obtain the standard first-order lower bound. The maximization
of (3.2.7) over t gives

f(y) ≥ f(x) + 〈∇f(x), y − x〉+ γ̄x,y
2 〈∇

2f(x)(y − x), y − x〉, (3.2.9)

with

γ̄x,y
def= ν

1+ν min
{

1, (2+ν)〈∇2f(x)(y−x),y−x〉
2Hν‖y−x‖2+ν

} 1
ν

, x 6= y, ν ∈ (0, 1].

Thus, (3.2.9) is always tighter than (3.2.6), employing additional global
second-order information. The relationship between them is shown in Fig-
ure 3.3. Hence, it seems natural to incorporate the second-order lower
bounds into optimization schemes.

−3 −2 −1 0 1 2 3 4

−1

0

1

2

3

4

Second-order
First-order

Figure 3.3: Global lower bounds for the logistic regression loss, f(x) = log(1 +
exp(x)).
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Figure 3.4: The graph of g(h) = 〈∇2f(0)h, h〉 · min
{

1, 3〈∇2f(0)h,h〉
4‖h‖3

}
, h ∈ R2,

where f(x) = log
(
exp(x(1)) + exp(x(2))

)
, whose Hessian is Lipschitz continuous

with constant L2 = 2 in the standard Euclidean norm (Example 1.3.5).

3.2.2 Contracting-Point Newton Methods
Let us introduce an optimization scheme which is based on global second-
order lower bounds.

Note that the right hand side of (3.2.9) is nonconvex in y (see Fig-
ure 3.4). Hence, it can hardly be used directly in a computational algorithm.
To tackle this issue, we use a sequence of contracting coefficients {γk}k≥0.
Each coefficient γk ∈ (0, 1] can be seen as an appropriate substitute of γ̄x,y
in (3.2.9). Then we minimize the corresponding global lower bound aug-
mented by the composite component ψ(·). The next point is taken as a
convex combination of the minimizer and the current point.

It appears that the iterations of such scheme coincide with the steps
of the Contracting-Point Tensor Method (Section 3.1.3) for the particular
instance p = 2.

Let us present the method in the algorithmic form. For simplicity, we
consider the case when the method uses the exact solution to the subprob-
lem.
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Contracting-Point Newton Method, I

Initialization. Choose x0 ∈ domψ.

Iteration k ≥ 0.

1: Pick up γk ∈ (0, 1].

2: Compute
vk+1 ∈ Argmin

y

{
〈∇f(xk), y − xk〉

+ γk
2 〈∇

2f(xk)(y − xk), y − xk〉+ ψ(y)
}
.

3: Set xk+1 = xk + γk(vk+1 − xk).

(3.2.10)

There is a clear connection of this method with Frank-Wolfe algorithm
(the case p = 1 of the Contracting-Point Tensor Method). Indeed, instead
of the standard first-order approximation (3.2.6), we use the lower global
quadratic model. Thus, as compared with the gradient methods, every
iteration of algorithm (3.2.10) is more expensive. However, this is a standard
situation with the second-order schemes (see the below discussion on the
iteration complexity). At the same time, our method is affine-invariant,
since it does not depend on the norms.

It is clear that we obtain iterations of the classical Newton’s method
when γk ≡ 1. Its local quadratic convergence for composite optimization
problems was established in Theorem 1.4.1. However, for the global conver-
gence, we need to adjust the contracting coefficients accordingly. To state
the global convergence result, let us define the following linear Estimating
Functions:

φk(x) def=
∑k
i=1 ai

[
f(xi) + 〈∇f(xi), x− xi〉+ ψ(x)

]
,

φ∗k
def= min

x
φk(x),

(3.2.11)

113



Chapter 3. Contraction Technique in Convex Optimization

for the sequence of test points {xk : xk ∈ domψ}k≥1 and positive scaling
coefficients {ak}k≥1. We relate them with contracting coefficients, as follows

γk
def= ak+1

Ak+1
, Ak

def=
∑k
i=1 ai. (3.2.12)

We denote by µ ≥ 0 the constant of strong convexity of ψ(·). We allow
µ = 0 in the following auxiliary lemma, in order to cover both the general
convex and the strongly convex cases. Thus, it holds

ψ(y) ≥ ψ(x) + 〈ψ′(x), y − x〉+ µ
2 ‖y − x‖

2, (3.2.13)

for all x, y ∈ domψ and for all ψ′(x) ∈ ∂ψ(x).

Lemma 3.2.2. For the sequences {xk}k≥1 and {vk}k≥1, produced by algo-
rithm (3.2.10), we have

AkF (xk) ≤ φk(x) + Bk(x), x ∈ domψ, (3.2.14)

with

Bk(x) def=
k∑
i=1

[
Hνa2+ν

i
‖x−vi‖·‖xi−1−vi‖1+ν

(1+ν)A1+ν
i

− µai‖x−vi‖2

2 − µaiAi−1‖xi−1−vi‖2

2Ai

]
.

(3.2.15)

Proof. Let us prove (3.2.14) by induction.

It obviously holds for k = 0, since A0 := 0, φ0(x) ≡ 0, and B0(x) ≡ 0
by definition.

Assume that it holds for the current k ≥ 0, and consider the next iterate.
Stationary condition for the method step is

〈∇f(xk) +∇2f(xk)(xk+1 − xk), x− vk+1〉+ ψ(x)

≥ ψ(vk+1) + µ
2 ‖x− vk+1‖2,

(3.2.16)

for all x ∈ domψ.
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Then, we have

φk+1(x) ≡ ak+1
[
f(xk+1) + 〈∇f(xk+1), x− xk+1〉+ ψ(x)

]
+ φk(x)

(3.2.14)
≥ ak+1

[
f(xk+1) + 〈∇f(xk+1), x− xk+1〉+ ψ(x)

]
+AkF (xk))

− Bk(x)

(∗)
≥ Ak+1

[
f(xk+1) + 〈∇f(xk+1), ak+1x+Akxk

Ak+1
− xk+1〉

]
+ ak+1ψ(x)

+ Akψ(xk)−Bk(x)

= Ak+1f(xk+1) + ak+1〈∇f(xk+1), x− vk+1〉+ ak+1ψ(x)

+ Akψ(xk)−Bk(x)

= Ak+1f(xk+1)

+ ak+1
[
〈∇f(xk) +∇2f(xk)(xk+1 − xk), x− vk+1〉+ ψ(x)

]
+ ak+1〈∇f(xk+1)−∇f(xk)−∇2f(xk)(xk+1 − xk), x− vk+1〉

+ Akψ(xk)−Bk(x),

where (∗) refers to convexity of f . Hence,

φk+1(x)
(3.2.16),(3.2.4)

≥ Ak+1f(xk+1) + ak+1
[
ψ(vk+1) + µ

2 ‖x− vk+1‖2
]

− Hνa
2+ν
k+1‖x−vk+1‖·‖vk+1−xk‖1+ν

(1+ν)A1+ν
k+1

+Akψ(xk)−Bk(x)

(∗∗)
≥ Ak+1F (xk+1) + µak+1‖x−vk+1‖2

2 + µak+1Ak
2Ak+1

‖xk − vk+1‖2

− Hνa
2+ν
k+1‖x−vk+1‖·‖vk+1−xk‖1+ν

(1+ν)A1+ν
k+1

+Akψ(xk)−Bk(x)

≡ Ak+1F (xk+1)−Bk+1(x),
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where (∗∗) stands for strong convexity of ψ. Thus we have (3.2.14) estab-
lished for all k ≥ 0.

Theorem 3.2.3. Let Ak := k3, and consequently, γk := 1 −
(

k
k+1
)3 =

O
( 1
k

)
. Then for the sequence {xk}k≥1 generated by algorithm (3.2.10), we

have

F (xk)− F ∗ ≤ `k
def= F (xk)− φ∗k

Ak
≤ O

(HνD2+ν

k1+ν

)
. (3.2.17)

Proof. First, by convexity of f we have, for all x ∈ domψ

φk(x) ≤ AkF (x).

Therefore, for the solution x∗ of our problem: F ∗ = F (x∗), it holds

F (xk)− F ∗ ≤ F (xk)− φk(x∗)
Ak

≤ `k
def= F (xk)− φ∗k

Ak
,

and this is the first part of (3.2.17).
At the same time, by Lemma 3.2.2, and using boundness of the domain,

we have

φ∗k := min
x∈domψ

{
φk(x)

} (3.2.14)
≥ min

x∈domψ

{
AkF (xk)−Bk(x)

}

≥ AkF (xk)− HνD2+ν

1+ν

k∑
i=1

a2+ν
i

A1+ν
i

Therefore, for the choice Ak := k3, we finally obtain

`k ≤ HνD2+ν

(1+ν)Ak

k∑
i=1

a2+ν
i

A1+ν
i

= HνD2+ν

(1+ν)k3

k∑
i=1

(i3−(i−1)3)2+ν

i3(1+ν)

≤ HνD2+ν

(1+ν)k3

k∑
i=1

32+ν i2(2+ν)

i3(1+ν) = 32+νHνD2+ν

(1+ν)k3

k∑
i=1

i1−ν

= O
(HνD2+ν

k1+ν

)
.

For the case ν = 1 (convex functions with Lipschitz continuous Hes-
sian), estimate (3.2.17) gives the convergence rate of the order O( 1

k2 ). This
rate was proven in Theorem 3.1.9 for the general Contracting-Point Tensor
Method with p = 2.
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In accordance to (3.2.17), in order to obtain ε-accuracy in functional
residual, F (xK)− F ∗ ≤ ε, it is enough to perform

K = O
(

inf
ν∈[0,1]

(HνD2+ν

ε

)1/(1+ν)
)

(3.2.18)

iterations of algorithm (3.2.10). In [60], there were proposed first universal
second-order methods (which do not depend on parameters ν and Hν of the
problem class), having complexity guarantees of the same order (3.2.18).
These methods are based on the Cubic regularization and an adaptive
search for estimating the regularization parameter at every iteration (see
Section 2.1).

It is important that algorithm (3.2.10) is both universal and affine-
invariant. Additionally, convergence result (3.2.17) provides us with a se-
quence {`k}k≥1 of computable accuracy certificates, which can be used as a
stopping criterion of the method.

Now, let us assume that the composite component is strongly convex
with parameter µ > 0. In this situation, we are able to improve convergence
estimate (3.2.17), as follows.
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Theorem 3.2.4. Let Ak := k5, and consequently, γk := 1 −
(

k
k+1
)5 =

O
( 1
k

)
. Then for the sequence {xk}k≥1 generated by algorithm (3.2.10), we

have

F (xk)− F ∗ ≤ `k ≤ O
(
HνDν

µ · HνD2+ν

k2+2ν

)
. (3.2.19)

Moreover, if the second-order condition number

ω̄ν
def=

[
HνDν

(1+ν)µ

] 1
1+ν (3.2.20)

is known, then, defining Ak := (1 + ω̄−1
ν )k, k ≥ 1, A0 := 0, and γk :=

1
1+ω̄ν , k ≥ 1, γ0 := 1, we obtain the global linear rate of convergence

F (xk)− F ∗ ≤ `k ≤ exp
(
− k−1

1+ω̄ν

)
· HνD2+ν

1+ν . (3.2.21)

Proof. Starting from the same reasoning, as in the proof of Theorem 3.2.3,
we get

F (xk)− F ∗ ≤ `k
def= F (xk)− φ∗k

Ak
.

Let us denote by uk the minimum of the Estimating Function φk. Thus,

`k = F (xk)− φk(uk)
Ak

(3.2.14)
≤ 1

Ak
Bk(uk) ≡ 1

Ak

k∑
i=1

B
(i)
k ,

with

B
(i)
k

def= ai

[
Hνa1+ν

i
‖uk−vi‖·‖xi−1−vi‖1+ν

(1+ν)A1+ν
i

− µ‖uk−vi‖2

2

]
− µaiAi−1‖xi−1−vi‖2

2Ai

≤ ai max
t≥0

{
Hνa1+ν

i
‖xi−1−vi‖1+νt

(1+ν)A1+ν
i

− µt2

2

}
− µaiAi−1‖xi−1−vi‖2

2Ai

= ai
2µ

(
Hνa1+ν

i
‖xi−1−vi‖1+ν

(1+ν)A1+ν
i

)2
− µaiAi−1‖xi−1−vi‖2

2Ai .

(3.2.22)
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Therefore, for the choice Ak := k5, we have

`k ≤ 1
Ak

k∑
i=1

ai
2µ

(
Hνa1+ν

i
‖xi−1−vi‖1+ν

(1+ν)A1+ν
i

)2
≤ H2

νD2(1+ν)

2µ(1+ν)2Ak

k∑
i=1

a
2(1+ν)+1
i

A
2(1+ν)
i

= H2
νD2(1+ν)

2µ(1+ν)2k5

k∑
i=1

(i5−(i−1)5)2(1+ν)+1

i10(1+ν) ≤ 52(1+ν)+1H2
νD2(1+ν)

2µ(1+ν)2k5

k∑
i=1

i2−2ν

= O
(HνDν

µ · HνD2+ν

k2+2ν

)
.

Thus we have justified (3.2.19). To obtain the linear rate (3.2.21), we set

Ak := (1 + ω̄−1
ν )k, k ≥ 1,

and A0 := 0. So, a1 = A1 and

ai = Ai −Ai−1 = ω̄−1
ν Ai−1, i ≥ 2.

Therefore, for the values {B(i)
k }ki=1, we have

B
(1)
k ≤ a1

HνD2+ν

1+ν = A1
HνD2+ν

1+ν ,

and

B
(i)
k

(3.2.22)
≤ H2

νD2ν‖xi−1−vi‖2a3+2ν
i

2µ(1+ν)2A2+2ν
i

− µaiAi−1‖xi−1−vi‖2

2Ai

= µaiAi−1‖xi−1−vi‖2

2Ai

([
HνDν

(1+ν)µ

]2 a2+2ν
i

A1+2ν
i

Ai−1
− 1
)

≤ µaiAi−1‖xi−1−vi‖2

2Ai

([
HνDν

(1+ν)µ

]2[
ai
Ai−1

]2(1+ν)
− 1
)

= 0, 2 ≤ i ≤ k,

since by our choice

ai
Ai−1

= ω̄−1
ν

(3.2.20)=
[

(1+ν)µ
HνDν

] 1
1+ν

.
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Finally, we obtain

`k ≤ 1
Ak
B

(1)
k ≤ A1

Ak
· HνD2+ν

1+ν = 1
(1+ω̄−1

ν )k−1 · HνD2+ν

1+ν

≤ exp
(
− k−1

1+ω̄ν

)
· HνD2+ν

1+ν .

Remark 3.2.5. Note that for the strongly convex function with bounded
domain, we have, for every q ≥ 2:

〈ψ′(y)− ψ′(x), y − x〉
(3.2.13)
≥ µ‖y − x‖2 = µ‖y−x‖q

‖y−x‖q−2

(3.2.1)
≥ µ‖y−x‖q

Dq−2 = σ‖y − x‖q,

with σq := µ
Dq−2 . Therefore, such a function is also uniformly convex for

arbitrary q ≥ 2, and definition (3.2.20) of the condition number is consistent
with (2.1.8). Namely, it holds:

ω̄ν =
( 1

1+ν · ων
) 1

1+ν .

According to estimate (3.2.21), in order to get ε-accuracy in function
value, it is enough to perform

K = O
(
(1 + ω̄ν) · log F (x0)−F∗

ε

)
iterations of the method. Hence, condition number ω̄ν plays the role of
the main complexity factor. This rate corresponds to that one of Cubically
Regularized Newton Method (Theorem 2.1.11).

At the same time, there exists a second variant of Contracting-Point
Newton Method, where the next point is defined by minimization of the full
second-order model for the smooth component augmented by the composite
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term over the contracted domain (this explains the names of our methods).

Contracting-Point Newton Method, II

Initialization. Choose x0 ∈ domψ.

Iteration k ≥ 0.

1: Pick up γk ∈ (0, 1].

2: Denote

S̄k(y) def=
{
ψ(y), y ∈ γkdomψ + (1− γk)xk,
+∞, else.

3: Compute
xk+1 ∈ Argmin

y

{
〈∇f(xk), y − xk〉

+ 1
2 〈∇

2f(xk)(y − xk), y − xk〉+ S̄k(y)
}
.

(3.2.23)

Note that algorithm (3.2.10) admits similar representation as well. 1

Both methods produce the same sequences of points when ψ(·) is {0,+∞}-
indicator of a convex set. Otherwise, they are different.

Using the same contraction technique, it was shown in [116] that the clas-
sical Frank-Wolfe algorithm can be extended onto the case of the composite
optimization problems. Additionally, the second-order Contracting Trust-
Region method was proposed, which has the same form as algorithm (3.2.23).
However, its convergence rate was established only at the level O( 1

k ). Here,
we improve its rate as follows.

Theorem 3.2.6. Let Ak := k3 and γk := 1 −
(

k
k+1
)3 = O

( 1
k

)
. Then for

the sequence {xk}k≥1 generated by algorithm (3.2.23), we have

F (xk)− F ∗ ≤ `k ≤ O
(HνD2+ν

k1+ν

)
. (3.2.24)

1Indeed, it is enough to take Sk(y) := γkψ(xk + 1
γk

(y − xk)).
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Proof. The proof is very similar to that one for algorithm (3.2.10). First,
the stationary condition for one iteration of algorithm (3.2.23) is

〈∇f(xk) +∇2f(xk)(xk+1 − xk), x− vk+1〉+ 1
γk
ψ
(
γkx+ (1− γk)xk

)
≥ 1

γk
ψ(xk+1),

(3.2.25)
for all x ∈ domψ and k ≥ 0 (compare with (3.2.16)), where

vk+1 := xk + 1
γk

(xk+1 − xk) ∈ domψ.

Then, it is enough to justify by induction the following bound

φk(x) ≥ AkF (xk)−Bk, x ∈ domψ, (3.2.26)

with Bk
def= HνD2+ν

1+ν
∑k
i=1

a2+ν
i

A1+ν
i

. Finally, by convexity of f , we get

F (xk)− F ∗ ≤ `k
def= F (xk)− φ∗k

Ak

(3.2.26)
≤ Bk

Ak
= HνD2+ν

(1+ν)Ak

k∑
i=1

a2+ν
i

A1+ν
i

= O
(HνD2+ν

k1+ν

)
,

where the last equation holds from the choice Ak := k3 (see the end of the
proof of Theorem 3.2.3).

This result is identical to Theorem 3.2.10. However, the first algorithm
can be accelerated on the class of strongly convex functions (see Theo-
rem 3.2.4). Thus, it seems that the first method is more preferable.

Finally, let us consider an example, when the composite component ψ(·)
is an `p-ball, as in (3.2.2). Then, iterations of the method can be represented
as

xk+1 ∈ xk + Argmin
h

{
〈∇f(xk), h〉+ 1

2 〈∇
2f(xk)h, h〉 :

‖xk + 1
γk
h‖p ≤ D

2

}
.

(3.2.27)

In this form, it looks as a variant of Trust-Region scheme. To solve the
subproblem in (3.2.27), we can use Interior Point Methods (e.g. Chapter 5
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in [117]). See also [30], for techniques, developed for Trust-Region schemes.
Usually, complexity of this step can be estimated as O(n3) arithmetic op-
erations, which comes from the cost of computing a suitable factorization
for the Hessian matrix. Alternatively, Hessian-free gradient methods can be
applied, for computing an inexact step (see [19, 17]).

In Section 4.2 of Chapter 4, we present implementation and the total
complexity analysis for the inexact iterations of the method (3.2.10), when
each step is computed by the first-order Conditional Gradient Method. In
Section 4.3 we study stochastic variants of the Contracting-Point Newton.

3.2.3 Aggregated Second-Order Models
In this section, we propose more advanced second-order models, based on
the global lower bound (3.2.7).

Using the same notation as before, consider a sequence of test points
{xk : xk ∈ domψ}k≥0 and sequences of coefficients {ak}k≥1, {γk}k≥0, sat-
isfying the relations (3.2.12).

Then, we can introduce the following Quadratic Estimating Functions
(compare with definition (3.2.11)):

Qk(x) def=
k−1∑
i=0

ai+1

[
f(xi) + 〈∇f(xi), x− xi〉

+ γi
2 〈∇

2f(xi)(x− xi), x− xi〉+ ψ(x)
]
.

By (3.2.7), we have the main property of Estimating Functions being satis-
fied. Namely, for all x ∈ domψ

AkF (x)
(3.2.7)
≥ Qk(x)−

∑k−1
i=0

ai+1γ
1+ν
i
Hν‖x−xi‖2+ν

(1+ν)(2+ν)

(3.2.1)
≥ Qk(x)− HνD2+ν

(1+ν)(2+ν)
∑k−1
i=0 ai+1γ

1+ν
i

=: Qk(x)− Ck
2 .

(3.2.28)

Therefore, if we would be able to guarantee for our test points the relation

Q∗k
def= min

x
Qk(x) ≥ AkF (xk)− Ck

2 , (3.2.29)

then we could immediately obtain the global convergence in function value.
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Fortunately, relation (3.2.29) can be achieved by simple iterations.

Aggregating Newton Method

Initialization. Choose x0 ∈ domψ.

Iteration k ≥ 0.

1: Pick up ak+1 > 0.

2: Set Ak+1 = Ak + ak+1 and γk = ak+1
Ak+1

.

3: Update Estimating Function

Qk+1 ≡ Qk(x) + ak+1
[
f(xk) + 〈∇f(xk), x− xk〉

+ γk
2 〈∇

2f(xk)(x− xk), x− xk〉+ ψ(x)
]
.

4: Compute vk+1 ∈ Argmin
x

Qk+1(x).

5: Set xk+1 = xk + γk(vk+1 − xk).

(3.2.30)

Clearly, the most complicated part of this process is Step 4, which is com-
putation of the minimum of Estimating Function. However, the complexity
of this step remains the same, as that one for the Contracting-Point Newton
Method.

We obtain the following convergence result.

Theorem 3.2.7. For the sequence {xk}k≥1 generated by algorithm (3.2.30),
relation (3.2.29) is satisfied. Consequently, for the choice Ak := k3, we
obtain

F (xk)− F ∗
(3.2.28)
≤ F (xk)− Q∗k

Ak
+ Ck

2Ak

(3.2.29)
≤ Ck

Ak

≤ O
(HνD2+ν

k1+ν

)
.

(3.2.31)
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Proof. Let us establish the relation (3.2.29) by induction. It obviously holds
for k = 0. Assume that it is proven for the current iterate k ≥ 0, and
consider the next step:

Qk+1(vk+1)

≡ Qk(vk+1) + ak+1
[
f(xk) + 〈∇f(xk), vk+1 − xk〉

+ γk
2 〈∇

2f(xk)(vk+1 − xk), vk+1 − xk〉+ ψ(vk+1)
]

(3.2.29)
≥ AkF (xk)− Ck

2 + ak+1
[
f(xk) + 〈∇f(xk), vk+1 − xk〉

+ γk
2 〈∇

2f(xk)(vk+1 − xk), vk+1 − xk〉+ ψ(vk+1)
]

= Akψ(xk)− Ck
2 +Ak+1

[
f(xk) + γk〈∇f(xk), vk+1 − xk〉

+ γ2
k

2 〈∇
2f(xk)(vk+1 − xk), vk+1 − xk〉] + ak+1ψ(vk+1)

= Akψ(xk)− Ck
2 +Ak+1

[
f(xk) + 〈∇f(xk), xk+1 − xk〉

+ 1
2 〈∇

2f(xk)(xk+1 − xk), xk+1 − xk〉] + ak+1ψ(vk+1).

Hence,

Qk+1(vk+1)

(3.2.5)
≥ Akψ(xk)− Ck

2 +Ak+1
[
f(xk+1)− Hν‖xk+1−xk‖2+ν

(1+ν)(2+ν)
]

+ ak+1ψ(vk+1)

≥ Ak+1f(xk+1)− ak+1γ
1+ν
k
HνD2+ν

(1+ν)(2+ν) +Ak+1ψ(xk+1)− Ck
2

= Ak+1F (xk+1)− Ck+1
2 .

Thus, we have (3.2.29) justified for all k ≥ 0.

Now, for the accuracy certificate we have new expression ¯̀
k := F (xk)−

Q∗k
Ak

+ Ck
2Ak . The value of Q

∗
k is available within the method directly. However,

in order to compute ¯̀
k in practice, some estimate for Ck, which depends on
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the Hölder constant Hν and on the diameter D of the domain, is required.
Note, that for the given choice of coefficients Ak := k3, we have ak = O(k2)
and γk = O( 1

k ). Therefore, new information enters into the model with
increasing weights, which seems natural.

3.2.4 Experiments
Let us discuss our computational results for the problem of training logistic
regression model, regularized by `2-ball constraints. In this problem, the
smooth part of the objective is

f(x) := 1
M

M∑
i=1

fi(x),

with fi(x) := log(1 + exp(〈ai, x〉)). The composite part is the indicator of a
Euclidean ball,

ψ(x) :=

0, ‖x‖2 :=
(∑n

i=1 |x(i)|2
)1/2

≤ D
2 ,

+∞, else.

Diameter D plays the role of regularization parameter, while vectors {ai :
ai ∈ Rn}Mi=1 are determined by the dataset2.

We compare the performance of the Contracting Newton Method (algo-
rithm 3.2.10) and the Aggregating Newton Method (algorithm 3.2.30) with
first-order optimization schemes: Frank-Wolfe algorithm [52], the classical
Gradient Method, and the Fast Gradient Method [114]. For the latter two
we use a line search at each iteration, to estimate the Lipschitz constant.
In all methods, we ensure monotonicity in the function value. The results
are shown in Figures 3.5 – 3.8.

We see that for bigger D , it becomes harder to solve the optimization
problem. Second-order methods demonstrate good performance both in
terms of the iterations, and the total computational time. 3

According to these graphs, our second-order algorithms can be more ef-
ficient when solving ill-conditioned problems, producing the better solution
within a given computational time.

2https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
3CPU time was evaluated on a machine with Intel Core i5 CPU, 1.6GHz; 8 GB

RAM. All methods have been implemented in C++. Operation system: macOS 10.15.
Compiler: Clang 12.0.0. The source code can be found at https://github.com/doikov/
contracting-newton/
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Figure 3.5: Logistic regression, w8a (M = 49749, n = 300).
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Figure 3.6: Logistic regression, a9a (M = 32561, n = 123).
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Figure 3.7: Logistic regression, connect-4 (M = 67557, n = 126).
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Figure 3.8: Logistic regression, mnist (M = 60000, n = 780).
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3.2. Global Lower Second-Order Models

Comparing the Contracting Newton and the Aggregating Newton meth-
ods, we conclude that both algorithms show reasonably good performance
in practice. The latter one works a bit slower. However, the aggregation of
the Hessians helps to improve numerical stability. In Figure 3.9, we demon-
strate the influence of the parameter of inner accuracy (EPS), which is the
bound for the dual problem that we use in our subsolver, on the convergence
of the algorithms. We see much more robust behaviour for the Aggregating
Newton Method, while the first algorithm can potentially stop, or even start
to diverge, if the parameter is chosen in a wrong way.

To compute one step of our second-order methods for this task, we need
to solve subproblem (3.2.27) for p = 2. This is minimization of quadratic
function over the standard Euclidean ball. First, we compute tridiagonal
decomposition of the Hessian (it requires O(n3) arithmetical operations).
Then, we solve the dual to our subproblem (which is maximization of one-
dimensional concave function) by classical Newton iterations (the cost of
each iteration is O(n)). For more details, see Chapter 7 in [30].
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Figure 3.9: Influence of the parameter of inner accuracy.
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3.2.5 Discussion
Let us discuss complexity estimates which we established in this part of the
thesis. For the basic versions of the Contracting Newton Method, we have
the global convergence in the functional residual of the form

F (xk)− F ∗ ≤ O
(
HνD2+ν

k1+ν

)
.

Note that the complexity parameter Hν depends only on the variation of
the Hessian (in arbitrary norm). It can be much smaller than the maximal
eigenvalue of the Hessian, which typically appears in the rates of first-order
methods. It is important that our algorithms are free from using the norms
or any other particular parameters of the problem class.

At the same time, the arithmetic complexity of one step of our methods
for simple sets can be estimated as the sum of the cost of computing the
Hessian, and O(n3) additional operations necessary to compute a suitable
factorization of the matrix. For example, the cost of computing the gradient
of Logistic Regression is O(Mn), and the Hessian is O(Mn2), where M is
the dataset size. Hence, it is preferable to use our algorithms with exact
steps in the situation when M is much bigger than n.

WhenM is very big and it is expensive to compute the full gradient and
Hessian at each iteration, we can use stochastic versions of our methods.
We present them in Section 4.3.

130



3.3. Contracting Proximal Methods

3.3 Contracting Proximal Methods

Let us present an acceleration of our Contracting-Point methods by employ-
ing the proximal idea. It appears that having a suitable prox-function for
our problem, we can achieve an accelerated rate of convergence. However,
the methods are no longer affine-invariant.

Iterations of the basic Proximal-Point algorithm for minimizing a convex
function f : dom f → R are as follows:

xk+1 = argmin
x

{
ak+1f(x) + 1

2‖xk − x‖
2
}
, k ≥ 0, (3.3.1)

where ‖ · ‖ is the Euclidean norm, and {ak}k≥0 is a sequence of positive
coefficients.

The regularized objective in (3.3.1) is strongly convex. Therefore, we
can hope that computing an (inexact) proximal step is usually simpler than
solving the initial problem. In Section 2.2.4, we have already discussed
the possibility of using the fast local convergence of high-order methods for
solving the proximal subproblem.

When f ∈ C1,1(E) (differentiable functions with Lipschitz continuous
gradient), we can set all values of the coefficients ak equal to a positive con-
stant. It gives a global sublinear rate of convergence of the iterations (3.3.1)
in functional residual of the order O(1/k). This is also the rate of the Gra-
dient Method.

For the same class of functions, we can get a faster rate of convergence
of the order O(1/k2) using the Fast Gradient Method [107]. It is the best
possible rate achievable for the first-order black-box optimization [106]. An
accelerated variant of the Proximal-Point algorithm with the optimal rate
of convergence was proposed in [66] (see also [140, 93, 94, 72] for extensions
and some applications).

In this part of the thesis, we present a new family of proximal-type algo-
rithms for smooth convex optimization called Contracting Proximal Meth-
ods, which includes an accelerated algorithm from [66] as a particular case.
It provides a systematic way for constructing faster proximal accelerated
methods for high-order optimization. Thus, for the class of convex func-
tions, whose p-th derivative is Lipschitz continuous (p ≥ 1), our new meth-
ods achieve the O(1/kp+1)-rate of convergence for the outer proximal iter-
ations, while the inner subproblems can be efficiently solved up to desired
accuracy by the basic Tensor Method.
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The main difference between Contracting Proximal Methods and the
classical approach (3.3.1) consists in employing the contracted objective
function and using the Bregman divergence (notation βd(x; y)) instead of
the usual Euclidean norm. The exact form of our method for minimizing a
convex function f : dom f → R is very simple:

vk+1 = argmin
x

{
Ak+1f

(ak+1x+Akxk
Ak+1

)
+ βd(vk;x)

}
,

xk+1 = ak+1vk+1+Akxk
Ak+1

, k ≥ 0.
(3.3.2)

Thus, we use a sequence of auxiliary points {vk}k≥0, and the scaling coeffi-
cients Ak

def=
∑k
i=1 ai.

Let us illustrate the basic idea behind this construction by the simplest
Euclidean setting, when βd(x; y) ≡ 1

2‖x − y‖
2. We are going to ensure at

each iteration k ≥ 0 the following condition, for all x ∈ dom f :

1
2‖x0 − x‖2 +Akf(x) ≥ 1

2‖vk − x‖
2 +Akf(xk). (3.3.3)

A direct consequence of (3.3.3) is the global convergence bound

f(xk)− f∗ ≤ ‖x0−x∗‖2

2Ak . (3.3.4)

We can propagate inequality (3.3.3) to the next iteration by a trivial obser-
vation:

1
2‖x0 − x‖2 +Ak+1f(x) = 1

2‖x0 − x‖2 +Akf(x) + ak+1f(x)

(3.3.3)
≥ 1

2‖vk − x‖
2 +Akf(xk) + ak+1f(x)

≥ 1
2‖vk − x‖

2 +Ak+1f
(ak+1x+Akxk

Ak+1

)
≡ hk+1(x),

where the last inequality is due to convexity of the objective. Note that
the first step of Contracting Proximal Method (3.3.2) is defined exactly as
follows:

vk+1 = argmin
x∈E

hk+1(x). (3.3.5)
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Hence, by strong convexity of hk+1(·), we finally justify that

hk+1(x) ≥ hk+1(vk+1) + 1
2‖vk+1 − x‖2

≥ Ak+1f(xk+1) + 1
2‖vk+1 − x‖2.

Thus, for the Euclidean setting, iteration (3.3.2) immediately results in
the convergence guarantee (3.3.4). However, we are still free in the choice of
coefficients {ak}k≥1. The only reason for bounding their growth consists in
keeping the complexity of the optimization problem (3.3.5) at the acceptable
level.4 For f ∈ C1,1(E), the recommended choice of ak+1 corresponds to
the quadratic equation [107]:

a2
k+1 = 1

L1
(ak+1 +Ak). (3.3.6)

It is easy to see, that this choice results in the optimal O(1/k2)-rate of
convergence for the method. On the other hand, it makes the condition
number of the problem (3.3.5) equal to an absolute constant. Let us assume
for simplicity, that f is two times continuously differentiable. Then, in view
of the presence of the regularization term, ∇2hk+1(x) � B. On the other
hand,

∇2hk+1(x) = B + a2
k+1
Ak+1

∇2f
(ak+1x+Akxk

Ak+1

) (3.3.6)
� 2B.

Hence, we are able to solve the problem (3.3.5) very efficiently by a usual
gradient method (see the details in Section 3.3.3).

It is remarkable that exactly the same reasoning justifies the accelerated
versions of all high-order Tensor Methods (p ≥ 2). The only difference
consists in the degree of the proximal term, which must be compatible with
the order of optimization scheme used for solving the problem (3.3.5).

Our first-order Contracting Proximal Method for Euclidean setting (de-
scribed above) produces the same sequence of points as the accelerated
Proximal-Point algorithm from [66]. However, now we can employ also the
Bregman divergence, which sometimes is more suitable for the geometry of
our problem and ensures faster convergence.

In what follows, we recall the notion of Bregman divergence and state
some of its properties in Section 3.3.1.

4Hence, these bounds should take into account the efficiency of the auxiliary mini-
mization scheme used for solving the problem (3.3.5).
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In Section 3.3.2, we introduce a general Contracting Proximal Method
(formulated as algorithm (3.3.22)). We present its convergence analysis
for a problem in composite form and arbitrary Bregman divergence. We
study both convex and strongly convex cases under inexactness in proximal
steps. Theorem 3.3.4 specifies how the parameters of the algorithm and
inner accuracy affect the convergence rate.

In Section 3.3.3, we discuss implementation of one iteration of our method,
under assumption that p-th derivative (p ≥ 1) of the smooth part of the
objective is Lipschitz continuous. We present fully-defined optimization
scheme (algorithm (3.3.58)), with incorporated steps of the Tensor Meth-
ods of a certain degree. Resulting algorithm achieves the accelerated rate of
convergence, with an additional logarithmic factor for the number of total
oracle calls. Final complexity estimate for this scheme is given by Theo-
rem 3.3.11 and Theorem 3.3.12.

Section 3.3.4 contains numerical experiments. Section 3.3.5 has some
final remarks.

3.3.1 Bregman Divergence
We use some arbitrary (possibly non-Euclidean) norm ‖ · ‖ on space E and
define the dual norm ‖ · ‖∗ on E∗ in the standard way,

‖s‖∗
def= sup

h∈E
{〈s, h〉 : ‖h‖ ≤ 1}, s ∈ E∗.

Let us fix arbitrary differentiable strictly convex function d : domψ → R,
which we call prox function. Then, we denote by βd(x; y) the corresponding
Bregman divergence [15], centered at x:

βd(x; y) def= d(y)− d(x)− 〈∇d(x), y − x〉.

Recall that function d is called uniformly convex of degree p + 1 (with
respect to the norm ‖ · ‖) with constant σp+1(d) > 0, if it holds for all
x, y ∈ dom d:

βd(x; y) ≥ σp+1(d)
p+1 ‖x− y‖

p+1. (3.3.7)

The main example, which naturally appears in the Tensor Methods and
which we use in Section 3.3.3, is the following prox function.

Example 3.3.1.
d(x) ≡ 1

p+1‖x− x0‖p+1,
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for some p ≥ 1. For the Euclidean norm this prox function is uniformly
convex of degree p+ 1 with constant 21−p (see Lemma 2.1.4), so it holds:

βd(x; y) ≥ 21−p

p+1 ‖x− y‖
p+1, x, y ∈ E. (3.3.8)

For more examples of available prox functions see [7, 95].

The definition of Bregman divergence can be extended to the case of a
nondifferentiable function ψ by specifying a particular subgradient ψ′(x) ∈
∂ψ(x):

βψ(x, ψ′(x); y) def= ψ(y)− ψ(x)− 〈ψ′(x), y − x〉.

However, we will use simpler notation βψ(x; y) if no ambiguity arise.
We say that function ψ is strongly convex with respect to d (see [95]) with

constant σd(ψ) > 0, if it holds for all x, y ∈ domψ and for all ψ′(x) ∈ ∂ψ(x)

βψ(x, ψ′(x); y) ≥ σd(ψ)βd(x; y). (3.3.9)

Inequality (3.3.9) always holds with σd(ψ) = 0 just by convexity. An inter-
esting illustration of this concept is given by a regularized Taylor polynomial
of degree 3 for a convex function.

Example 3.3.2. Let f : dom f → R be convex, with Lipschitz continuous
third derivative (L3 < +∞).

Consider the following regularization of its Taylor approximation, for
some τ > 1:

g(y) ≡ Ω3(f, x; y) + τ2L3
8 ‖y − x‖

4.

Then, for the Euclidean norm, the function g(·) is strongly convex with
respect to the following prox function (see Lemma 4 in [118]):

d(h) ≡ 1
2
(
1− 1

τ

)
D2f(x)[h]2 + τ(τ−1)L3

8 ‖h‖4.

Let us summarize some basic properties of Bregman divergence, which
follow directly from its definition. For any pair f1, f2 of convex functions
and all x, y ∈ dom (f1 + f2) we have

βa1f1+a2f2(x; y) = a1βf1(x; y) + a2βf2(x; y), a1, a2 ≥ 0. (3.3.10)
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For any linear function `(x) = a+ 〈g, x〉 we have

β`(x; y) = 0. (3.3.11)

Therefore, from (3.3.10) and (3.3.11) we conclude, that

βf (x; y) = βd(x; y), (3.3.12)

when f(y) = βd(z; y) for some fixed z. Now, consider the following simple
but general construction, which we use in a core of our analysis. Let h be
a regularized composite objective:

h(y) = g(y) + aψ(y) + µβd(z; y), a, µ ≥ 0,

where g and ψ are arbitrary closed convex functions, and ψ is strongly
convex with respect to d for some constant σd(ψ) ≥ 0. Then, for every
x, y ∈ dom h and every h′(x) ∈ ∂h(x), we have that

βh(x; y) = h(y)− h(x)− 〈h′(x), y − x〉

(3.3.10),(3.3.12)= βg(x; y) + aβψ(x; y) + µβd(x; y)

≥ (aσd(ψ) + µ)βd(x; y).

(3.3.13)

In particular, for the exact minimum T = argmin
y∈E

h(y), we have

h(y) ≥ h(T ) + (aσd(ψ) + µ)βd(T ; y). (3.3.14)

3.3.2 Contracting Proximal Methods

In our general scheme for solving the composite optimization problem,

min
x

{
F (x) = f(x) + ψ(x)

}
,

we are going to maintain the following inequality, for every x ∈ domψ and
k ≥ 0:

µ0βd(x0;x) +AkF (x) ≥ µkβd(vk;x) +AkF (xk) + Ck(x), (3.3.15)
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where {xk}k≥0 and {vk}k≥0 are sequences of points from domψ, {Ak}k≥0
is a sequence of increasing numbers:

ak+1
def= Ak+1 −Ak > 0, A0 = 0,

and {µk}k≥0 is a sequences of nondecreasing proximal coefficients:

µk+1 ≥ µk, µ0 > 0.

We would prefer functions Ck(x) be as big as possible. Thus, if it happens
to be Ck(x∗) ≥ 0 for all k ≥ 1, then from (3.3.15) we have a convergence
guarantee:

F (xk)− F ∗ ≤ µ0βd(x0,x
∗)

Ak
, k ≥ 1,

and the rate of convergence is determined by the growth of coefficients Ak
towards infinity. However, in general Ck(x) may have arbitrary sign.

Let us discus a simple possibility for propagating relation (3.3.15) to the
next iteration.

µ0βd(x0;x) +Ak+1F (x)

= µ0βd(x0;x) +AkF (x) + ak+1F (x)

(3.3.15)
≥ µkβd(vk;x) +AkF (xk) + ak+1F (x) + Ck(x)

≥ µkβd(vk;x) +Ak+1f
(ak+1x+Akxk

Ak+1

)
+ ak+1ψ(x) +Akψ(xk) + Ck(x),

(3.3.16)

where the last inequality is due to convexity of f . Let us consider a con-
tracted objective with regularizer from the last step:

hk+1(x) def= Ak+1f
(ak+1x+Akxk

Ak+1

)
+ ak+1ψ(x) + µkβd(vk;x). (3.3.17)

This function is strongly convex with respect to d(·) with parameter

σd(hk+1) ≥ µk+1
def= ak+1σd(ψ) + µk. (3.3.18)
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If we are able to compute the exact minimum

T = argmin
x∈E

hk+1(x), (3.3.19)

then by (3.3.14) we see that

hk+1(x) +Akψ(xk)

≥ hk+1(T ) + µk+1βd(T ;x) +Akψ(xk)

= Ak+1f
(ak+1T+Akxk

Ak+1

)
+ ak+1ψ(T ) + µkβd(vk;T )

+ µk+1βd(T ;x) +Akψ(xk)

≥ Ak+1F
(ak+1T+Akxk

Ak+1

)
+ µkβd(vk;T ) + µk+1βd(T ;x).

And it is natural to set vk+1 = T and

xk+1
def= ak+1vk+1+Akxk

Ak+1
. (3.3.20)

Thus we would obtain guarantee (3.3.15) for the next step, with

Ck+1(x) ≡ Ck(x) + µkβd(vk; vk+1) ≡
∑k
i=1 µiβd(vi; vi+1) ≥ 0.

Now, instead of computing the exact minimum (3.3.19), let us relax
vk+1 ∈ domψ to be a point with a small norm of subgradient:

‖s‖∗ ≤ δk+1, for some s ∈ ∂hk+1(vk+1). (3.3.21)

Note that condition (3.3.21) can be easily verified algorithmically since in
composite setting we are able to compute points with small subgradient of
hk+1.
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Thus, we come to the following general scheme.

Contracting Proximal Method

Initialization.
Choose x0 ∈ domψ, µ0 > 0. Set v0 = x0, A0 = 0.

Iteration k ≥ 0.

1: Choose ak+1 > 0. Set Ak+1 = Ak + ak+1.

2: Denote contracted objective with regularizer:

hk+1(x) = Ak+1f
(ak+1x+Akxk

Ak+1

)
+ ak+1ψ(x) + µkβd(vk;x).

3: Choose accuracy δk+1 ≥ 0.

4: Find vk+1 ∈ domψ s.t. ∃s ∈ ∂hk+1(vk+1) : ‖s‖∗ ≤ δk+1.

5: Set xk+1 = ak+1vk+1+Akxk
Ak+1

.

6: Set µk+1 = µk + ak+1σd(ψ) = µ0 +Ak+1σd(ψ) .

(3.3.22)

At this moment, we need one additional assumption. It relates the dual
norm ‖ · ‖∗ (used at Step 4) with the Bregman divergence βd(v;x).

Assumption 3.3.3. For some p ≥ 1, prox-function d(·) is uniformly convex
of degree p+1 with respect to the primal norm ‖·‖ with parameter σp+1(d) >
0 (see inequality (3.3.7)).

Let us write down the convergence guarantees of the method.

Theorem 3.3.4 (Convergence of Contracting Proximal Method). Let As-
sumption (3.3.3) hold. Then for algorithm (3.3.22) at all iterations k ≥ 0
we have:

Ak (F (xk)− F ∗) + µkβd(vk;x∗) +
k∑
i=1

µiβd(vi−1; vi)

≤ Rk(p, δ),

(3.3.23)

139



Chapter 3. Contraction Technique in Convex Optimization

where

Rk(p, δ) def=
((
µ0βd(x0;x∗)

) p
p+1 +

(
p+1

σp+1(d)

) 1
p+1 k∑

i=1

δi
µ

1/(p+1)
i

) p+1
p

.

Proof. First, let us ensure by induction in k ≥ 0 that the following inequality
holds:

Ak (F (xk)− F (x)) + µkβd(vk;x) +
k∑
i=1

µiβd(vi−1; vi)

≤ µ0βd(x0;x) +
k∑
i=1
〈si, vi − x〉, x ∈ domψ,

(3.3.24)

where si ∈ ∂hi(vi). It is obviously true for k = 0. Suppose that it holds
for some k ≥ 0 and consider the case k + 1. Note that (3.3.24) is exactly
(3.3.15) with

Ck(x) ≡
k∑
i=1

[
µiβd(vi−1; vi) + 〈si, x− vi〉

]
.

Therefore, we have

µ0βd(x0;x) +Ak+1F (x)

(3.3.16)
≥ hk+1(x) +Akψ(xk) + Ck(x)

(3.3.13)
≥ hk+1(vk+1) + 〈sk+1, x− vk+1〉+ µk+1βd(vk+1;x)

+ Akψ(xk) + Ck(x)

= Ak+1f(xk+1) + ak+1ψ(vk+1) + µk+1βd(vk+1;x)

+ Akψ(xk) + Ck+1(x)

≥ Ak+1F (xk+1) + µk+1βd(vk+1;x) + Ck+1(x).

This is (3.3.24) for the next step.

Now, plugging x ≡ x∗ into (3.3.24) and taking into account nonnegativ-
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ity of all terms in the left-hand side, we get

µkβd(vk;x∗) ≤ µ0βd(x0;x∗) +
k∑
i=1
〈si, vi − x∗〉.

Now, we need to estimate the right-hand side from above. Using uniform
convexity (3.3.7), we conclude that for every k ≥ 0

µkσp+1(d)
p+1 ‖vk − x∗‖p+1

≤ µ0βd(x0;x∗) +
k∑
i=1
‖si‖∗ · ‖vi − x∗‖

(3.3.21)
≤ µ0βd(x0;x∗) +

k∑
i=1

δi‖vi − x∗‖ ≡ αk.

(3.3.25)

In order to finish the proof, it is enough to bound from above the value αk,
for which we have the following recurrence:

αk = αk−1 + δk‖vk − x∗‖
(3.3.25)
≤ αk−1 + δk

(
p+1

µkσp+1(d)

) 1
p+1

α
1
p+1
k .

Dividing both sides by α
1
p+1
k and using monotonicity of this sequence, we

get

α
p
p+1
k ≤ αk−1

α
1/(p+1)
k

+ δk

(
p+1

µkσp+1(d)

) 1
p+1 ≤ α

p
p+1
k−1 + δk

(
p+1

µkσp+1(d)

) 1
p+1

.

Finally, from the last inequality we obtain

αk ≤
(
α

p
p+1
0 +

(
p+1

σp+1(d)

) 1
p+1 k∑

i=1

δi
µ

1/(p+1)
i

) p+1
p

,

which is the right-hand side of (3.3.23).

We see that accuracies δk for subgradients of the subproblems appears
in Rk(p, δ) in an additive form, weighted by the coefficients µ−

1
p+1

k . They
should be chosen in a way making the right-hand side of (3.3.23) small
enough. Let us consider the simplest case, when all δk are the same.

Corollary 3.3.5. Let δk = δ > 0 for all k ≥ 1. Assume that the coefficients
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Ak grow sublinearly:

Ak ≥ ckp+1, k ≥ 1, (3.3.26)

with some constant c > 0. Then for every

k ≥
(
µ0βd(x0;x∗)

cε

) 1
p+1 2

1
p and

δ ≤ (cε)
p
p+1

2

(
µ0σp+1(d)

p+1

) 1
p+1

(3.3.27)

we have
Rk(p, δ) ≤ εAk. (3.3.28)

Consequently, by (3.3.23) we have F (xk)− F ∗ ≤ ε.

Proof. Indeed,(
µ0βd(x0;x∗)

Ak

) p
p+1 (3.3.26)

≤
(
µ0βd(x0;x∗)

c

) p
p+1

kp
(3.3.27)
≤ ε

p
p+1

2 ,

and (
p+1

σp+1(d)

) 1
p+1

A

p
p+1
k

k∑
i=1

δi
µ

1/(p+1)
i

≤

(
p+1

µ0σp+1(d)

) 1
p+1

kδ

A

p
p+1
k

(3.3.26)
≤

(
p+1

µ0σp+1(d)

) 1
p+1

δ

c
p
p+1 kp+1

≤

(
p+1

µ0σp+1(d)

) 1
p+1

δ

c
p
p+1

(3.3.27)
≤ ε

p
p+1

2 .

Summing up these two inequalities we obtain (3.3.28).

Corollary 3.3.6. Let δk = δ > 0 for all k ≥ 1. Let the coefficients Ak grow
linearly:

Ak ≥ A1 exp
(
ω(k − 1)

)
, k ≥ 1, (3.3.29)

with some constant 0 < ω ≤ 1 and initial A1 > 0. Then for every

k ≥ 1 + 1
ω log

(
µ0βd(x0;x∗)

A1ε
2(p+1)/p

)
(3.3.30)
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and
δ ≤ (A1ε)

p
p+1 ω

2 · p
p+1 ·

(
µ0σp+1(d)

p+1

) 1
p+1 (3.3.31)

we have
Rk(p, δ) ≤ εAk. (3.3.32)

Consequently, by (3.3.23) we have F (xk)− F ∗ ≤ ε.

Proof. Indeed,

(
µ0βd(x0;x∗)

Ak

) p
p+1 (3.3.29)

≤
(

µ0βd(x0;x∗)
A1 exp

(
ω(k−1)

)) p
p+1 (3.3.31)

≤ ε
p
p+1

2 .

Now, note that the following inequality holds for all x ≥ 0:

exp(x) ≥ 1 + x. (3.3.33)

Therefore,

A

p
p+1
k

k

(3.3.29)
≥ A

p
p+1
1 exp( p

p+1ω(k−1))
k

(3.3.33)
≥

A

p
p+1
1

(
1+ p

p+1ω(k−1)
)

k > p
p+1A

p
p+1
1 ω.

(3.3.34)

And we obtain(
p+1

σp+1(d)

) 1
p+1

A

p
p+1
k

k∑
i=1

δi
µ

1/(p+1)
i

≤

(
p+1

µ0σp+1(d)

) 1
p+1

kδ

A

p
p+1
k

(3.3.34)
<

(
p+1

µ0σp+1(d)

) 1
p+1

(p+1)δ

A

p
p+1
1 pω

(3.3.31)
≤ ε

p
p+1

2 .

Estimates (3.3.27) and (3.3.31) show that the bound for the inner ac-
curacy δ has a reasonable dependency on ε, which is the absolute accuracy
required for the initial problem. Thus, in both cases, on step 4 of the algo-
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rithm we need to find a point vk+1 with subgradient s ∈ ∂hk+1(vk+1):

‖s‖∗ ≤ O
(
ε

p
p+1

)
⇔ ‖s‖

p+1
p
∗ ≤ O

(
ε
)
.

This is a reachable goal, especially for methods minimizing hk+1(·) with a
linear rate of convergence.

In practice, it may be reasonable not to use very small inner accuracy
on a first stage, but to decrease it over the iterations. Then, the following
simple choice of {δk}k≥0 can work.

Corollary 3.3.7. Let us define δk ≡ c
ks with fixed absolute constants c > 0

and s > 1. Then,
k∑
i=1

δi
(1.3.9)
≤ cs

s−1 .

Therefore, we have

Rk(p, δ) ≤
((
µ0βd(x0;x∗)

) p
p+1 +

(
p+1

µ0σp+1(d)

) 1
p+1 cs

s−1

) p+1
p

.

3.3.3 Applications of Tensor Methods
Let us incorporate steps of the basic Tensor Method (1.5.1) into algo-
rithm (3.3.22) for solving the corresponding inner subproblem (3.3.19).
From now on, we restrict our attention to the Euclidean norm: ‖x‖ ≡
〈Bx, x〉1/2, x ∈ E.

Assumption 3.3.8. For fixed p ≥ 1, f ∈ Cp,p(domψ). So the p-th deriva-
tive of the smooth component of the objective is Lipschitz continuous with
some constant 0 < Lp(f) < +∞.

For this setup, we use the following simple prox function:

d(x) ≡ 1
p+1‖x− x0‖p+1. (3.3.35)

Thus, the choice of prox function (3.3.35) is strictly related to the preferable
degree p ≥ 1 of smoothness of function f .

We recall that the Taylor approximation Ωp(f, x; y) of function f around
the point x ∈ dom f is defined as

Ωp(f, x; y) def= f(x) +
p∑
i=1

1
i!D

if(x)[y − x]i.
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We have the following bounds (Lemma 1.3.7): for all x, y ∈ domψ,

|f(y)− Ωp(f, x; y)| ≤ Lp(f)
(p+1)!‖y − x‖

p+1, (3.3.36)

‖∇f(y)−∇y Ωp(f, x; y)‖∗ ≤ Lp(f)
p! ‖y − x‖

p. (3.3.37)

Let us look at our regularized objective hk+1(·) which need to be mini-
mized at every step k ≥ 0:

hk+1(x)

= Ak+1f

(
ak+1x+Akxk

Ak+1

)
︸ ︷︷ ︸

def= gk+1(x)

+ ak+1ψ(x) + µkβd(vk;x)︸ ︷︷ ︸
def= φk+1(x)

. (3.3.38)

This is a sum of two convex functions: smooth component gk+1, and possi-
bly nonsmooth but simple component φk+1, which is strongly convex with
respect to d.

Let us drop unnecessary indices and consider the subproblem in a general
form:

min
x

{
h(x) ≡ g(x) + φ(x)

}
, (3.3.39)

with g having bounded Lipschitz constant for some p ≥ 1: 0 < Lp(g) <
+∞. Since we assume the objective to be strongly convex with respect to
d from (3.3.35) with parameter σd(h) > 0, for every x, y ∈ dom h and all
h′(x) ∈ ∂h(x) we have:

h(y)− h(x)− 〈h′(x), y − x〉 ≥ σd(h)βd(x; y)

(3.3.8)
≥ σd(h)21−p

p+1 ‖y − x‖p+1.

(3.3.40)

Bound (3.3.36) motivates us to define the following point:

TM (h;x) def= argmin
y

{
Ωp(g, x; y)

+ M
(p+1)!‖y − x‖

p+1 + φ(y)
}
,

(3.3.41)

145



Chapter 3. Contraction Technique in Convex Optimization

and consider the following iteration process:

zt+1 = TM (h; zt), t ≥ 0 (3.3.42)

Let us mention some properties of point T ≡ TM (h;x). Its characteristic
condition is as follows,

φ′(T ) def= −∇yΩp(g, x;T )− M
p! ‖T − x‖

p−1B(T − x) ∈ ∂φ(T ).

This inclusion justifies notation h′(T ) def= ∇g(T ) + φ′(T ) ∈ ∂h(T ). In
order to work with this object, we need to use Lemma 2.2.1. In terms of
our current objective (3.3.39), we have, setting M = pLp(g):

〈h′(T ), x− T 〉 ≥
(

p!
(p+1)Lp(g)

) 1
p · ‖h′(T )‖

p+1
p
∗ . (3.3.43)

Next, by (2.2.19)we have the following description of the global behaviour
of the method, for all x, y ∈ dom h:

h(TM (x)) ≤ h(y) + (p+1)Lp(g)
(p+1)! ‖y − x‖

p+1, (3.3.44)

when M = pLp(g). Now, we are ready to prove a convergence result on the
iteration process (3.3.42), for the norm of the subgradients.

Theorem 3.3.9. Let M = pLp(g). Then, for every t ≥ 0 and y ∈ dom h

we have

‖h′(zt+2)‖
p+1
p
∗ ≤ exp

(
−t ·min

{
1,
[
p!σd(h)21−p

(p+1)Lp(g)

] 1
p

}
· p
p+1

)

·
(

(p+1)Lp(g)
p!

) 1
p

·
(
h(y)− h∗ + Lp(g)

p! ‖y − z0‖p+1
)
.

(3.3.45)

Proof. Let us consider the point zt+1 = TM (zt). By (3.3.44), we have

h(zt+1) ≤ h(y) + Lp(g)
p! ‖y − zt‖

p+1, (3.3.46)

for any y ∈ dom h. Denote x∗h
def= argminy h(y), and consider y = zt +
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α(x∗h − zt) for α ∈ [0, 1]. Then we have

h(zt+1)− h∗

≤ h(zt)− h∗ − α (h(zt)− h∗) + αp+1 Lp(g)
p! ‖x

∗
h − zt‖p+1

(3.3.40)
≤

(
1− α+ αp+1 (p+1)Lp(g)

p!σd(h)21−p

)
· (h(zt)− h∗) .

(3.3.47)

The minimum of the right-hand side is attained at

α∗ = min
{

1,
[
p!σd(h)21−p

(p+1)Lp(g)

] 1
p

}
.

Plugging it into (3.3.47) gives

h(zt+1)− h∗ ≤
(

1− α∗ p
p+1

)
· (h(zt)− h∗)

≤ exp
(
−α∗ p

p+1

)
· (h(zt)− h∗).

(3.3.48)

Therefore, for every t ≥ 0 we have

h(zt+1)− h∗
(3.3.48)
≤ exp

(
−tα∗ p

p+1

)
· (h(z1)− h∗)

(3.3.46)
≤ exp

(
−tα∗ p

p+1

)
·
(
h(y)− h∗ + Lp(g)

p! ‖y − z0‖p+1
)
,

for every y ∈ dom h. It remains to use (3.3.43) and finish the proof:

h(zt+1)− h∗ ≥ h(zt+1)− h(zt+2)

≥ 〈h′(zt+2), zt+1 − zt+2〉

(3.3.43)
≥

(
p!

(p+1)Lp(g)

) 1
p · ‖h′(zt+2)‖

p+1
p
∗ . �

Thus, we can see that applying the Tensor Method (3.3.42) of degree p ≥
1 on Step 4 of the general Contracting Proximal Method (algorithm (3.3.22)),
we obtain fast linear convergence for the norms of subgradients. Hence, we
can estimate the total number of inner steps tk at iteration k ≥ 0 as follows.
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Corollary 3.3.10. Let us minimize function hk+1(·) by iterations:

zt+1 = TM (hk+1; zt), t ≥ 0,

using M := pLp(gk+1) and z0 := vk. Then we have

‖h′k+1(ztk)‖∗ ≤ δk+1,

for

tk ≥ 2 + max
{

1, `k+1
µ̄k+1

}
· p+1

p · log
(
`k+1 Dk+1

δ

p+1
p

k+1

)
, (3.3.49)

where

`k+1
def=

(
(p+1)Lp(gk+1)

p!

) 1
p

, µ̄k+1
def=

(
µk+121−p) 1

p , (3.3.50)

and

Dk+1
def= Ak(F (xk)− F ∗) + µkβd(vk;x∗)

+
(
`k+1
µ̄k+1

)p
βd(vk;x∗)

(3.3.23)
≤ Rk(p, δ) ·

(
1 + 1

µ0

(
`k+1
µ̄k+1

)p)
.

(3.3.51)

Proof. By definition, for all x ∈ domψ, we have

hk+1(x) +Akψ(xk)

= Ak+1f
(ak+1x+Akxk

Ak+1

)
+ ak+1ψ(x) + µkβd(vk;x) +Akψ(xk)

≥ Ak+1F
(ak+1x+Akxk

Ak+1

)
+ µkβd(vk;x) ≥ Ak+1F

∗.

Therefore,
−h∗k+1 −Akψ(xk) ≤ −Ak+1F

∗. (3.3.52)
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Then for y ≡ x∗ def= argminy F (y) we obtain

hk+1(y)− h∗k+1 + Lp(gk+1)
p! ‖y − z0‖p+1

= hk+1(x∗)− h∗k+1 + Lp(gk+1)
p! ‖x∗ − vk‖p+1

= Ak+1f
(ak+1x

∗+Akxk
Ak+1

)
+ ak+1ψ(x∗)− h∗k+1 + µkβd(vk;x∗)

+ Lp(gk+1)
p! ‖x∗ − vk‖p+1

≤ ak+1F
∗ +AkF (xk)− h∗k+1 −Akψ(xk) + µkβd(vk;x∗)

+ Lp(gk+1)
p! ‖x∗ − vk‖p+1

(3.3.52)
≤ Ak(F (xk)− F ∗) + µkβd(vk;x∗) + Lp(gk+1)

p! ‖x∗ − vk‖p+1

(3.3.8)
≤ Dk+1.

It remains to use this bound together with (3.3.45) and the following esti-

mation of strong convexity parameter: σd(hk+1)
(3.3.18)
≥ µk+1.

By representation (3.3.38), we have a simple relations between Lipschitz
constants of the derivatives for function gk+1(·) and f(·):

Lp(gk+1) = ap+1
k+1
Ap
k+1

Lp(f), p ≥ 1. (3.3.53)

Therefore, we can control the condition number of our objective. Indeed,
by (3.3.49), the main complexity factor in minimization process for hk+1(·)
is the ratio

`k+1
µ̄k+1

≡
(

(p+1)Lp(gk+1)
p! 21−pµk+1

) 1
p (3.3.53),(3.3.18)=

( (p+1)2p−1ap+1
k+1Lp(f)

p!Ap
k+1(µ0+Ak+1σd(ψ))

) 1
p

.

We are able to keep this ratio small by applying an appropriate growth
strategy for coefficients Ak.

Let us consider two cases: σd(ψ) = 0 and σd(ψ) > 0.

1. σd(ψ) = 0. Let us choose c ≡ p!µ0
2p−1(p+1)p+2Lp(f) and ak ≡ c(p + 1)kp.

149



Chapter 3. Contraction Technique in Convex Optimization

Then we have

Ak = c(p+ 1)
k∑
i=1

ip ≥ c(p+ 1)
k∫
0
xpdx = ckp+1,

and we get

ap+1
k+1
Ap
k+1

≤ c(p+ 1)p+1 = p!µ0
2p−1(p+1)Lp(f) . (3.3.54)

Thus we obtain

`k+1
µ̄k+1

=
(
ap+1
k+1
Ap
k+1
· 2p−1(p+1)Lp(f)

p!µ0

) 1
p

(3.3.54)
≤ 1. (3.3.55)

2. σd(ψ) > 0. For k = 0 we pick a1 ≡ c(p + 1) as in the previous case.
Now consider k ≥ 1. Denote

ω
def= min{

(
σd(ψ)p!

Lp(f)(p+1)2p−1

) 1
p+1

, 1
2} (3.3.56)

and choose ak+1 from the equation

ak+1
Ak+1

= ak+1
ak+1+Ak = ω ⇔ ak+1 = ω(1− ω)−1Ak.

Therefore

`k+1
µ̄k+1

≤
(
ap+1
k+1
Ap+1
k+1
· Lp(f)(p+1)2p−1

p!σd(ψ)

) 1
p

= ω ·
(
Lp(f)(p+1)2p−1

p!σd(ψ)

) 1
p+1 ≤ 1.

(3.3.57)

Thus, in both cases, at every upper-level step we need to perform a
logarithmic number of iterations of the inner method, multiplied by a small
constant.
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We are ready to specify the whole optimization procedure.

Contracting Proximal Tensor Method

Initialization.
Choose x0 ∈ domψ, µ0 > 0, δ > 0. Set v0 = x0, A0 = 0.
Fix d(x) = 1

p+1‖x− x0‖p+1.
Set c = p!µ0

2p−1(p+1)p+2Lp(f) , ω = min{
( σd(ψ)p!
Lp(f)(p+1)2p−1

) 1
p+1 , 1

2}.

Iteration k ≥ 0.

1: If k = 0 or ω = 0, then choose ak+1 = c(p+ 1)(k + 1)p.
Else choose ak+1 = ω(1− ω)−1Ak.

2: Set Ak+1 = Ak + ak+1.

3: Denote contracted objective with regularizer:
gk+1(x) = Ak+1f

(ak+1x+Akxk
Ak+1

)
,

φk+1(x) = ak+1ψ(x) + µkβd(vk;x),
hk+1(x) = gk+1(x) + φk+1(x).

4: Solve inner subproblem by Tensor Method.

4-a: Initialization. Set z0 = vk, tk = 0,M = pLp(f) a
p+1
k+1
Ap
k+1

.
4-b: Compute ztk+1 = TM (hk+1, ztk). Set tk = tk + 1.
4-c: If ‖h′k+1(ztk)‖∗ ≤ δ, then set vk+1 = ztk and go to 5.

Else go to 4-b.

5: Set xk+1 = ak+1vk+1+Akxk
Ak+1

.

6: Set µk+1 = µk + ak+1σd(ψ) = µ0 +Ak+1σd(ψ).

(3.3.58)

Let us present global complexity bounds for this method in convex and
strongly convex cases.
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Theorem 3.3.11 (Convex Case). Let for a given ε > 0, we choose:

δ =
(

p! ε
Lp(f)

) p
p+1 µ0

2p(p+1)p+1 .

Then, in order to achieve F (xK)− F ∗ ≤ ε it is enough to perform

K =
⌊

1 + 2
1
p

(
2p−1(p+1)p+2Lp(f) βd(x0;x∗)

ε p!

) 1
p+1
⌋

(3.3.59)

iterations of algorithm (3.3.58). The total number of oracle calls NK
def=∑K

k=1 tk is bounded as

NK ≤ K ·
(

3 + p+1
p log

(
4
(
1 + 1

µ0

)
(p+ 1)

1
pKp

))
. (3.3.60)

Proof. Estimate (3.3.59) follows from (3.3.27), by substituting the value
c = p!µ0

2p−1(p+1)p+2Lp(f) . Now, let us prove (3.3.60). By (3.3.49), we have

tk ≤ 3 + max
{

1, `k+1
µ̄k+1

}
· p+1

p · log
(
`k+1Dk+1

δ
p+1
p

)
(3.3.55),(3.3.51)

≤ 3 + p+1
p · log

(
µ

1/p
0 (1+µ−1

0 )Rk(p,δ)

δ
p+1
p

)
.

In order to finish the proof, we need to bound the value under the logarithm.
By the choice of ak, we have an upper bound for Ak:

Ak = c(p+ 1)
k∑
i=1

ip ≤ c(p+ 1)
k+1∫
0
xpdx = c(k + 1)p+1. (3.3.61)

Therefore, for every 0 ≤ k ≤ K:

Rk(p,δ)

δ
p+1
p

=
(

(µ0βd(x0;x∗))
p
p+1

δ +
( (p+1)2p−1

µ0

) 1
p+1 k

) p+1
p

≤
(

(µ0βd(x0;x∗))
p
p+1

δ +
( (p+1)2p−1

µ0

) 1
p+1K

) p+1
p

=
((Lp(f)βd(x0;x∗)

p! ε
) p
p+1 2p(p+1)p+1

µ
1/(p+1)
0

+
( (p+1)2p−1

µ0

) 1
p+1K

) p+1
p

(3.3.59)
≤

(( (p+1)2p−1

µ0

) 1
p+1 (Kp +K)

) p+1
p ≤ 4

(
p+1
µ0

) 1
pKp. �
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Now, let us discuss the overall dependence of δ and K on p, given by
the claim of Theorem 3.3.11. For simplicity, we fix Lp(f)

ε , βd(x0;x∗), and
µ0. Thus, we observe the functions

δ(p) := (p!)
p
p+1

2p(p+1)p+1 , K(p) := 1 + 2
1
p

(
2p−1(p+1)p+2

p!

) 1
p+1

. (3.3.62)

One can see that log2 δ(p) ≤ −p. Therefore, increasing the order of the
method by one, it requires at least to double the precision of solving the
subproblem. At the same time, we have (using Stirling’s formula):

lim
p→+∞

K(p) = 1 + 2 exp
(

lim
p→+∞

(p+2) log(p+1)−log p!
p+1

)
= 1 + 2 exp(1).

Hence, the value of K(p) is bounded from above by an absolute constant.
The graphs of the dependence (3.3.62) are shown in Figure 3.10. Note that
in practice, we are interested rather in small values of p.
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Figure 3.10: The dependence of δ and K on p, while Lp(f)
ε

and βd(x0;x∗) are
fixed.

Theorem 3.3.12 (Strongly Convex Case). Let σd(ψ) > 0 and condition
number ω be defined as in (3.3.56). Let for a given ε > 0, the inner accuracy
δ be fixed as follows:

δ =
(

p! ε
Lp(f)

) p
p+1 µ0pω

2p(p+1)((p+1)2+1)/(p+1) . (3.3.63)

Then, in order to achieve F (xK)− F ∗ ≤ ε, it is enough to perform

K =
⌊
2 + 1

ωL
⌋

(3.3.64)
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iterations of algorithm (3.3.58), where

L def= log
(

max
{ (p+1)p
ωp+1 ,

Lp(f)βd(x0;x∗)(p+1)p+12p+ 1
p

p! ε
})
.

The total number of oracle calls NK is bounded as follows:

NK ≤ K ·
(

3 +
(
1 + e

(e−1)p
)
·
(
1 + L

)
+ log

(

max{1,
(

4σd(ψ)p!
(p+1)Lp(f)

) 1
p } ·

(
1 + 1

µ0

)
· (p+1)

p+2
p

p
p+1
p

· 2
2p2+p+4

p

))
.

(3.3.65)

Proof. At every iteration k ≥ 1, we have Ak+1 = (1−ω)−1Ak ≥ Ak exp(ω).
At the same time, we know that

ω ≤ 1
2 ≤

e−1
e , (3.3.66)

where e = exp(1). Since for all α ∈ [0, 1] it holds

1− e−1
e α ≥ exp(−α),

taking α = ω e
e−1

(3.3.66)
≤ 1 we obtain Ak+1 ≤ Ak exp

(
ω e
e−1
)
. Therefore we

have, for all k ≥ 0:

A1 exp
(
kω
)
≤ Ak+1 ≤ A1 exp

(
kω e

e−1

)
. (3.3.67)

Now, estimate (3.3.64) follows directly from (3.3.67) and (3.3.30) by using
the value A1 = p!µ0

2p−1(p+1)p+1Lp(f) .

By the choice of ak+1, we have `k+1
µ̄k+1

(3.3.57)
≤ 1, and we need only to

estimate the value under the logarithm in (3.3.49). For every 0 ≤ k ≤ K,
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we have:

`k+1Dk+1

δ
p+1
p

(3.3.57),(3.3.51)
≤

µ̄k+1Rk(p,δ)
(

1+ 1
µ0

)
δ
p+1
p

= (µ0 + σd(ψ)Ak+1)
1
p 2

1
p−1(1 + 1

µ0

)
·
(

(µ0βd(x0;x∗))
p
p+1

δ +
(

(p+1)2p−1

µ0

) 1
p+1

k

) p+1
p

≤ (µ0 + σd(ψ)AK+1)
1
p 2

1
p−1(1 + 1

µ0

)
·
(

(µ0βd(x0;x∗))
p
p+1

δ +
(

(p+1)2p−1

µ0

) 1
p+1

K

) p+1
p

.

Let us estimate different terms in this expression separately.

1. By definition of ω, we have

ωp+1 ≤ (p+1)pσd(ψ)A1
µ0

. (3.3.68)

Therefore,

µ0 + σd(ψ)AK+1
(3.3.68),(3.3.67)

≤ σd(ψ)A1

(
(p+1)p
ωp+1 + exp

(
Kω e

e−1

))
(3.3.64)
≤ 2σd(ψ)A1 exp

(
Kω e

e−1

)
.

2. Substituting the value for δ, we obtain

(µ0βd(x0;x∗))
p
p+1

δ

(3.3.63)=
(
Lp(f)βd(x0;x∗)

p! ε

) p
p+1 2p(p+1)((p+1)2+1)/(p+1)

pωµ
1
p+1
0

(3.3.64)
≤ (p+1)22(2p2+p+1)/(p+1)

pωµ
1
p+1
0

exp
(
Kω p

p+1

)
.

3. Finally, using that exp(x) ≥ x for all x ≥ 0, we have

K ≤ p+1
pω exp

(
Kω p

p+1

)
.
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Therefore,

`k+1Dk+1

δ
p+1
p

≤ exp
(
Kω e

(e−1)p

)
·
(

22−pσd(ψ)A1

) 1
p ·
(

1 + 1
µ0

)

·
(

exp
(
Kω p

p+1

)
pωµ

1/(p+1)
0

(
(p+ 1)22

2p2+p+1
p+1 + (p+ 1)

p+2
p+1 2

p−1
p+1

)) p+1
p

< exp
(
Kω
(

e
(e−1)p + 1

))
·
(

1
pω

) p+1
p ·

(
σd(ψ)A1

µ0

) 1
p

·
(

1 + 1
µ0

)
· (p+ 1)

2(p+1)
p 2

2p2+p+4
p

= exp
(
Kω
(

e
(e−1)p + 1

))
·max{1,

(
4σd(ψ)p!

(p+1)Lp(f)

) 1
p }

·
(

1 + 1
µ0

)
· (p+1)

p+2
p

p
p+1
p

· 2
2p2+p+4

p ,

and we obtain (3.3.65).

According to Theorem 3.3.11 and Theorem 3.3.12, the rate of conver-
gence for the outer iterations of algorithm (3.3.58) is of the same order,
than that one of accelerated Tensor Method from [118]. However, at each
step it uses logarithmic number of steps of the basic method. It seems to be
a reasonable price for the level of generality. Indeed, we are free to choose
an arbitrary method as the basic one. The only requirement to it is the
possibility of solving the inner subproblem (3.3.39) efficiently.

Note, that an additional feature of our methods is that the sequences of
points {xk}k≥0 and {vk}k≥0 form triangles (see the rule (3.3.20)). A first-
order accelerated method with this nice property was discovered in [55].

3.3.4 Experiments

Quadratic function. Let us compare numerical performance of the first-
order Contracting Proximal Method and the classical Proximal-Point algo-
rithm (3.3.1) for unconstrained minimization of a convex quadratic function:

f(x) = 1
2 〈Ax, x〉 − 〈b, x〉, x ∈ Rn,
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3.3. Contracting Proximal Methods

with A = A∗ � 0. We also run the Gradient Method and the Accelerated
Gradient Method for this problem. A typical behaviour of the algorithms
is shown on Figure 3.11. The Contracting Proximal Method has the same
iteration rate as that of the Accelerated Gradient Method, but requires more
gradient evaluations (matrix-vector products) per iteration.

To compute every step of the proximal algorithms, we use the Gradient
Method with line search. We try different strategies for choosing inner
accuracies δk, and end up with a simple rule δk = 1/k2, which provides
a good balance in performance of outer proximal iterations and the inner
method (usually, it requires to do about 4 inner steps per iteration).

We generate a random rotation from the uniform distribution, but the
set of eigenvalues of the matrix was fixed according to the sigmoid function,
for some given α > 0

λi = 1
1+exp

(
α
n−1 (n+1−2i)

) , 1 ≤ i ≤ n.

Therefore it holds: λ1 = 1/(1 + exp(α)) and λn = 1/(1 + exp(−α)), so
parameter α is related to the condition number of the problem.

In Table 3.1 we demonstrate the number of iterations and the total
number of matrix-vector products, which are required for the methods to
solve the problem up to ε = 10−7 accuracy in functional residual.
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Figure 3.11: Convergence of first-order methods on quadratic function.

We see that the Contracting Proximal Method is always better than the
usual Proximal algorithm. It requires about the same number of iteration
as the Accelerated Gradient Methods, but it needs to spend more oracle
calls per iteration, which confirms the theory.
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Gradient
Method

Proximal
Method

Accelerated
Gradient
Method

Contracting
Proximal
Method

n q iter mat-vec iter mat-vec iter mat-vec iter mat-vec

500 10−2 339 339 361 1044 115 229 74 137
10−4 12158 12158 12842 36731 350 699 393 1104
10−6 96072 96072 99269 313795 854 1707 1081 3780

1000 10−2 338 338 359 1035 110 219 73 135
10−4 11884 11884 11912 56996 360 719 361 1014
10−6 77675 77675 80758 239508 755 1509 1117 3957

Table 3.1: Minimization of quadratic function, q = λmin(A)/λmax(A).

Log-Sum-Exp. In the next example we compare performance of second-
order methods for unconstrained minimization of the following objective

f(x) = µ log
(
m∑
i=1

exp
(
〈ai,x〉−bi

µ

))
, x ∈ Rn,

where µ > 0 is a parameter, while coefficients of the vectors {ai}mi=1 and b are
randomly generated, and we set m = 6n. We get the more ill-conditioned
problem for smaller values of parameter µ.

We compare the Cubic Newton Method (1.4.9) and its accelerated vari-
ant from [111] with Contracting Proximal Cubic Newton (algorithm (3.3.58)
for p = 2), when minimizing the objective up to ε = 10−8 accuracy in func-
tional residual. In these algorithms we use the following Euclidean norm for
the primal space: ‖x‖ = 〈Bx, x〉1/2, with matrix B =

∑m
i=1 aia

T
i , and fix

regularization parameter being equal 1. The results are shown in Table 3.2.

Cubic Newton Accelerated
Cubic Newton

Contracting
Proximal

Cubic Newton
n µ iter oracle iter oracle iter oracle

50 1 389 389 177 353 112 491
0.1 482 482 202 403 141 587
0.05 886 886 343 685 236 1129

100 1 834 834 308 615 189 849
0.1 1210 1210 377 753 232 1021
0.05 2598 2598 641 1281 397 1740

Table 3.2: Comparison of second-order methods on Log-sum-exp.
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We see that the Contracting Proximal Method outperforms the direct
methods in the number of iterations, but usually requires additional oracle
calls for solving the subproblem.

3.3.5 Discussion
We have proposed a general acceleration scheme, based on the Proximal
iterations. There are two distinguishing features of our methods: employing
the contraction of the smooth component of the objective (this provides the
acceleration), and flexibility of prox-function (its choice should take into
account both the geometry of the problem and the order of the smoothness).

One of the recent important applications of the accelerated Proximal-
Point methods in machine learning is the universal framework Catalyst,
applicable to the first-order methods [93, 94]. This is a powerful approach
for accelerating many specific optimization methods in a common way. We
believe that our results can help in advancing in this direction, resulting in
the faster high-order methods for many practical applications.

In Section 4.1.3 of Chapter 4, we will study inexact Contracting Proxi-
mal Methods based on the small residual in the function value. This condi-
tion can be preferable in situations when minimization of the (sub)gradient
norm is difficult or even impossible to manage, such as stochastic and fully
composite [43] optimization problems.
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Chapter 4

Inexact and Stochastic
Algorithms

With the growth of computing power, high-order optimization methods are
becoming more and more popular in machine learning, due to their abil-
ity in tackling ill-conditioning and improving the rate of convergence. We
have already seen several modifications of Newton’s method equipped with
global complexity guarantees, which are better than those of the first-order
gradient methods.

The main weakness, though, is that every step of the high-order methods
is much more expensive. It requires to solve an auxiliary subproblem, which
involves a minimization of a sum of a nontrivial smooth function (at least,
quadratic function as in Newton’s method) with a regularizer, and possibly
with some additional nondifferentiable components.

At the same time, it is clear that often we do not need exact solutions
to the subproblems, especially in the beginning of the optimization process.
In this chapter, we study relaxed versions of the high-order methods. Our
aim is to ensure the fast convergence of the initial algorithms under some
suitable and practically implementable conditions of inexactness for the
method’s step and for the oracle information.
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4.1 Inexact Tensor Methods with Dynamic
Inner Accuracies

Now we have a family of the basic Tensor Methods (1.5.1) (starting from
the methods of order one), for each iteration of which we may need to call
some auxiliary subsolver. We suggest to describe the approximate solution
to the subproblem in terms of the residual in the function value. We propose
two strategies for the inner accuracies, which are dynamic (changing with
iterations). Indeed, there is no need to have a very precise solution to
the subproblem at the first iterations, but we reasonably ask for a higher
precision closer to the end of the optimization process.

Global convergence of the first-order methods with inexact proximal-
gradient steps was studied in [142]. The authors considered the errors in the
residual in function value of the subproblem, and require them to decrease
with iterations at an appropriate rate. This setting is the most similar to
our approach.

In [21, 22], adaptive second-order methods with cubic regularization and
inexact steps were proposed. High-order inexact tensor methods were con-
sidered in [13, 74, 63, 62, 26, 96]. In all of these works, the authors describe
approximate solution of the subproblem in terms of the corresponding first-
order optimality condition (using the gradients). This can be difficult to
achieve by the current optimization schemes, since more often we have a
better (or the only) guarantees for the decrease of the residual in function
value. The latter one is used as a measure of inaccuracy in the recent
work [119] on the inexact Basic Tensor Methods. However, only the con-
stant choice of the accuracy level is considered there.

We propose new dynamic strategies for choosing the inner accuracy for
the general Tensor Methods, and several inexact algorithms based on it,
with proven complexity guarantees, summarized next. We denote by δk the
required precision for the residual in function value of the auxiliary problem.

• The rule δk := 1/kp+1, where p ≥ 1 is the order of the method, and k
is the iteration counter.

Using this strategy, we propose two optimization schemes: Mono-
tone Inexact Tensor Method I (algorithm (4.1.4)) and Inexact Ten-
sor Method with Averaging (algorithm (4.1.31)). Both of them have
the global complexity estimates O(1/ε

1
p ) iterations for minimizing

the convex function up to ε -accuracy (see Theorem 4.1.3 and Theo-
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rem 4.1.9). The latter method seems to be the first primal high-order
scheme (aggregating the points from the primal space only), having
the explicit distance between the starting point and the solution, in
the complexity bound.

• The rule δk := c · (F (xk−2)−F (xk−1)), where F (xi) are the values of
the target objective during the iterations, and c ≥ 0 is a constant.
We incorporate this strategy into our Monotone Inexact Tensor Method
II (algorithm (4.1.14)). For this scheme, for minimizing convex func-
tions up to ε-accuracy by the methods of order p ≥ 1, we prove
the global complexity proportional to O(1/ε

1
p ) (Theorem 4.1.5). The

global rate becomes linear, if the objective is uniformly convex (The-
orem 4.1.6).
Assuming that δk := c · (F (xk−2) − F (xk−1))

p+1
2 , for the methods

of order p ≥ 2 as applied to minimization of strongly convex objec-
tive, we also establish the local superlinear rate of convergence (see
Theorem 4.1.7).

• Using the technique of Contracting Proximal iterations discovered in
the previous chapter, we propose inexact Accelerated Scheme (algo-
rithm (4.1.35)), in which at each iteration k, we solve the correspond-
ing subproblem with the precision ζk := 1/kp+2 in the residual of the
function value, by inexact Tensor Methods of order p ≥ 1. The result-
ing complexity bound is Õ(1/ε

1
p+1 ) inexact tensor steps for minimizing

the convex function up to ε accuracy (Theorem 4.1.10).

• Numerical results with empirical study of the methods for different
accuracy policies are provided.

In Section 4.1.1 we introduce an approximate minimum of the high-order
model of the objective. We study monotone inexact methods, for which
we guarantee the decrease of the objective function at every iteration. In
Section 4.1.2 we study the methods with averaging. In Section 4.1.3 we
present our accelerated scheme. Section 4.1.4 contains numerical results.

4.1.1 Monotone Inexact Methods
As before, we are interested in solving the convex optimization problem in
the composite form:

min
x

{
F (x) = f(x) + ψ(x)

}
.
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For a fixed p ≥ 1, we assume f ∈ Cp,p(domψ). Let us denote by MH(x; y)
the following regularized model of our objective, with H being the regular-
ization constant:

MH(x; y) def= Ωp(f, x; y) + H‖y−x‖p+1

(p+1)! + ψ(y). (4.1.1)

This model is used in the basic Tensor Method (1.5.1). For H ≥ pLp,
function MH(x; ·) is always convex (Theorem 1.5.2), and thus its minimum
is well defined.

Let us assume that at every step of our method, we minimize the
model (4.1.1) inexactly by an auxiliary subroutine up to some given ac-
curacy δ ≥ 0. We use the following definition of inexact δ-step.

Definition 4.1.1. Denote by TH,δ(x) a point T = TH,δ(x) ∈ domψ, satis-
fying

MH(x;T )−min
y
MH(x; y) ≤ δ. (4.1.2)

The main property of this point is given by the next lemma.

Lemma 4.1.2. Let H = αLp for some α ≥ p. Then, for every y ∈ domψ

F (TH,δ(x)) ≤ F (y) + (α+1)Lp‖y−x‖p+1

(p+1)! + δ. (4.1.3)

Proof. Indeed, denoting T = TH,δ(x), we have

F (T )
(1.3.5)
≤ MH(x;T )

(4.1.2)
≤ MH(x; y) + δ,

(1.3.5)
≤ F (y) + (α+1)Lp‖y−x‖p+1

(p+1)! + δ.

Now, if we plug y = x (a current iterate) into (4.1.3), we obtain

F (TH,δ(x)) ≤ F (x) + δ.

So in the case δ = 0 (exact tensor step), we would have nonincreasing
sequence {F (xk)}k≥0 of test points of the method. However, this is not the
case for δ > 0 (inexact tensor step). Therefore we propose the following
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minimization scheme with correction.

Monotone Inexact Tensor Method, I

Initialization. Choose x0 ∈ domψ. Fix H = pLp.
Iteration k ≥ 0.
1: Pick up δk+1 ≥ 0.
2: Compute inexact tensor step Tk+1 = TH,δk+1(xk).
3: If F (Tk+1) ≤ F (xk), then set xk+1 = Tk+1.

Else choose xk+1 = xk.

(4.1.4)

If at some step k ≥ 0 of this algorithm we get xk+1 = xk, then we need to
decrease inner accuracy for the next step. From the practical point of view,
an efficient implementation of this algorithm should include a possibility of
improving accuracy of the previously computed point.

Denote by D0 the radius of the initial level set of the objective:

D0
def= sup

x

{
‖x− x∗‖ : F (x) ≤ F (x0)

}
. (4.1.5)

For algorithm (4.1.4), we can prove the following convergence result,
which uses a simple strategy for choosing δk+1.

Theorem 4.1.3. Let D0 < +∞. Let the sequence of inner accuracies
{δk}k≥1 be chosen according to the rule

δk = c
kp+1 (4.1.6)

with some c ≥ 0. Then for the sequence {xk}k≥1 produced by algorithm
(4.1.4), we have

F (xk)− F ∗ ≤ (p+1)p+1LpD
p+1
0

p! kp + c
kp . (4.1.7)

Proof. Indeed, by Lemma 4.1.2, for every y ∈ domψ and k ≥ 0 we have

F (xk+1) ≤ F (Tk+1)
(4.1.3)
≤ F (y) + Lp‖y−xk‖p+1

p! + δk+1. (4.1.8)
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Let us introduce an arbitrary sequence of positive increasing coefficients
{Ak}k≥0, A0

def= 0. Denote ak+1
def= Ak+1 − Ak. Then, plugging y =

ak+1x
∗+Akxk

Ak+1
into (4.1.8), we obtain

F (xk+1) ≤ ak+1
Ak+1

F ∗ + Ak
Ak+1

F (xk) + ap+1
k+1
Ap+1
k+1

Lp‖xk−x∗‖p+1

p! + δk+1,

or, equivalently

Ak+1(F (xk+1)− F ∗) ≤ Ak(F (xk)− F ∗) + ap+1
k+1
Ap
k+1

Lp‖xk−x∗‖p+1

p!

+ Ak+1δk+1.

Summing up these inequalities, we get, for every k ≥ 1

Ak(F (xk)− F ∗) ≤
k∑
i=1

Aiδi + Lp
p!

k∑
i=1

ap+1
i

Ap
i
‖xi − x∗‖p+1

≤
k∑
i=1

Aiδi + LpD
p+1
0
p!

k∑
i=1

ap+1
i

Ap
i
,

(4.1.9)

where the last inequality holds due to monotonicity of the method. Finally,
let us fix Ak ≡ kp+1. Then, for some ξ ∈ [k − 1; k],

ak = kp+1 − (k − 1)p+1 = (p+ 1)ξp ≤ (p+ 1)kp.

Therefore,

k∑
i=1

ap+1
i

Ap
i
≤

k∑
i=1

(p+1)p+1ip(p+1)

i(p+1)p = (p+ 1)p+1k, (4.1.10)

and
k∑
i=1

Aiδi =
k∑
i=1

cip+1

ip+1 = ck. (4.1.11)

Plugging these bounds into (4.1.9) completes the proof.

We see that the global convergence rate of the inexact Tensor Method
remains on the same level, as of the exact one. Namely, in order to achieve
F (xK) − F ∗ ≤ ε, we need to perform K = O(1/ε

1
p ) iterations of the algo-

rithm. According to these bounds, at the last iterationK, the rule (4.1.6) re-
quires to solve the subproblem up to the absolute accuracy δK = O(cε

p+1
p ).
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This is intriguing, since for bigger p (order of the method) we need less ac-
curate solutions. Note that this estimate for δK coincides with the constant
choice of inner accuracy in [119]. However, the dynamic strategy (4.1.6)
provides a significant decrease of the computational time on the first itera-
tions of the method, which is also confirmed by our numerical results (see
Section 4.1.4).

Now, looking at algorithm (4.1.4), one may think that we are forgetting
the points Tk+1 such that F (Tk+1) ≥ F (xk), and thus we are loosing some
computations. However, this is not true: even if point Tk+1 has not been
taken as xk+1, we shall use it internally as a starting point for computing
the next Tk+2. To support this concept, we introduce the inexact δ-step
with an additional condition of monotonicity. Specifically,

Definition 4.1.4. Denote by SH,δ(x) a point S = SH,δ(x) ∈ domψ, satis-
fying the following two conditions:

MH(x;S)−min
y
MH(x; y) ≤ δ, (4.1.12)

F (S) < F (x). (4.1.13)

It is clear, that point S from Definition 4.1.4 satisfies Definition 4.1.1 as
well (while the opposite is not always the case). Therefore, we can also use
Lemma 4.1.2 for the monotone inexact tensor step.

Using this definition, we simplify algorithm (4.1.4) and present the fol-
lowing scheme.

Monotone Inexact Tensor Method, II

Initialization. Choose x0 ∈ domψ. Fix H = pLp.
Iteration k ≥ 0.
1: Pick up δk+1 ≥ 0.
2: Compute inexact monotone tensor step
xk+1 = SH,δk+1(xk).

(4.1.14)

When our method is strictly monotone, we guarantee that F (xk+1) <
F (xk) for all k ≥ 0, and we propose to use the following adaptive strategy
to define the inner accuracies.
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Theorem 4.1.5. Let D0 < +∞. Let sequence of inner accuracies {δk}k≥1
be chosen in accordance to the rule

δk+1 = c ·
(
F (xk−1)− F (xk)

)
, k ≥ 1 (4.1.15)

for some fixed 0 ≤ c < 1
(p+2)3p+1−1 and δ1 ≥ 0. Then for the sequence

{xk}k≥1 produced by algorithm (4.1.14), we have

F (xk)− F ∗ ≤ γLpD
p+1
0

p! kp + β
kp+2 , (4.1.16)

where γ and β are the constants:

γ
def= (p+2)p+1

1−c((p+2)3p+1−1) , β
def= δ1+c2p+2(F (x0)−F∗)

1−c((p+2)2/(p+1)−1) . (4.1.17)

Proof. First, by the same reasoning as in Theorem 4.1.3, we obtain the
following bound, for every k ≥ 1:

Ak(F (xk)− F ∗) ≤
k∑
i=1

Aiδi + LpD
p+1
0
p!

k∑
i=1

ap+1
i

Ap
i
, (4.1.18)

where {Ak}k≥0 is a sequence of increasing coefficients, with A0
def= 0, and

ak
def= Ak −Ak−1. Substituting into (4.1.18) the expression for δi, we get

Ak(F (xk)− F ∗) ≤ A1δ1 + c
k∑
i=2

Ai(F (xi−2)− F (xi−1))

+ LpD
p+1
0
p!

k∑
i=1

ap+1
i

Ap
i
, k ≥ 1,

(4.1.19)

or, rearranging the terms, it holds for every k ≥ 2:

(c+ 1)Ak(F (xk)− F ∗)

≤ Ak(F (xk)− F ∗) + cAk(F (xk−1)− F ∗)

(4.1.19)
≤ LpD

p+1
0
p!

k∑
i=1

ap+1
i

Ap
i

+ c
k−2∑
i=1

(Ai+2 −Ai+1)(F (xi)− F ∗)

+ A1δ1 + cA2(F (x0)− F ∗)

= LpD
p+1
0
p!

k∑
i=1

ap+1
i

Ap
i

+ c
k−2∑
i=1

ai+2(F (xi)− F ∗)

+ A1δ1 + cA2(F (x0)− F ∗),

(4.1.20)
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and for k = 1 we have

A1(F (x1)− F ∗)
(4.1.19)
≤ A1δ1 + LpD

p+1
0
p!

ap+1
1
Ap1

= A1
(
δ1 + LpD

p+1
0
p!

)
.

(4.1.21)

Now, let us pick Ak ≡ kp+2. Then,

ak ≡ kp+2 − (k − 1)p+2 ≤ (p+ 2)kp+1,

and

k∑
i=1

ap+1
i

Ap
i
≤ (p+ 2)p+1

k∑
i=1

i(p+1)2

i(p+2)p = (p+ 2)p+1
k∑
i=1

i ≤ (p+ 2)p+1k2.

Therefore, (4.1.20) leads to

(c+ 1)kp+2(F (xk)− F ∗)

≤ (p+2)p+1k2LpD
p+1
0

p! + c(p+ 2)
k−2∑
i=1

(i+ 2)p+1(F (xi)− F ∗)

+ δ1 + c2p+2(F (x0)− F ∗), k ≥ 2.

(4.1.22)

And the statement to be proved is

F (xk)− F ∗ ≤ β
kp+2 + γLpD

p+1
0

p! kp , k ≥ 1, (4.1.23)

where β and γ are from (4.1.17). Note that from our assumptions c is small
enough: c ≤ 1

(p+2)3p+1−1 . Hence, the constants are correctly defined.

Let us prove (4.1.23) by induction. It holds for k = 1 by (4.1.21).
Assuming that it holds for all 1 ≤ k ≤ K − 2, we have

F (xK)− F ∗
(4.1.22),(4.1.23)

≤ (p+2)p+1LpD
p+1
0

(c+1) p!Kp

+ c(p+2)
(c+1)Kp+2

K−2∑
i=1

(i+ 2)p+1(γLpDp+1
0

p! ip + β
ip+2

)
+ δ1+c2p+2(F (x0)−F∗)

(c+1)Kp+2

=
( (p+2)p+1

c+1 + γc(p+2)
(c+1)K2

K−2∑
i=1

(i+2)p+1

ip

)
· LpD

p+1
0

p!Kp

+
(βc(p+2)

(c+1)

K−2∑
i=1

1
ip+2 + δ1+c2p+2(F (x0)−F∗)

c+1
)
· 1
Kp+2 .
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Using in the last expression the following two simple bounds:

K−2∑
i=1

(i+2)p+1

ip ≤ 3p+1
K−2∑
i=1

ip+1

ip ≤ 3p+1K2,

K−2∑
i=1

1
ip+2

(1.3.9)
≤ p+2

p+1 ,

we obtain

F (xK)− F ∗ ≤ (p+2)p+1+γc(p+2)3p+1

c+1 · LpD
p+1
0

p!Kp

+
(

βc(p+2)2

(c+1)(p+1) + δ1+c2p+2(F (x0)−F∗)
c+1

)
1

Kp+2 ,

Therefore, to finish the proof, its enough to verify two equations:

βc(p+2)2

(c+1)(p+1) + δ1+c2p+2(F (x0)−F∗)
c+1 = β, and (p+2)p+1+γc(p+2)3p+1

c+1 = γ.

which hold by definition (4.1.17).
The rule (4.1.15) is surprisingly simple and natural: while the method is

approaching the optimum, it becomes more and more difficult to optimize
the function. Consequently, the progress in the function value at every
step is decreasing. Therefore, we need to solve the auxiliary problem more
accurately, and this is exactly what we are doing in accordance to this rule.

It is also notable, that the rule (4.1.15) is universal, in a sense that it
remains the same (up to a constant factor) for the methods of any order,
starting from p = 1.

This strategy also works for the nondegenerate case. Let us assume that
our objective is uniformly convex of degree p + 1 with constant σp+1 (see
Chapter 2). Thus, for all x, y ∈ domψ and F ′(x) ∈ ∂F (x) it holds

F (y)− F (x) + 〈F ′(x), y − x〉 ≥ σp+1
p+1 ‖y − x‖

p+1. (4.1.24)

For p = 1 this definition corresponds to the standard class of strongly convex
functions.

Denote by ω̄p the condition number of degree p:

ω̄p
def= max{ (p+1)2Lp

p!σp+1
, 1}. (4.1.25)

The next theorem shows, that ω̄p serves as the main factor in the complexity
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of solving the uniformly convex problems by inexact Tensor Methods.

Theorem 4.1.6. Let σp+1 > 0. Let sequence of inner accuracies {δk}k≥1
be chosen in accordance to the rule

δk = c ·
(
F (xk−2)− F (xk−1)

)
, k ≥ 2 (4.1.26)

for some fixed 0 ≤ c < p
p+1 ω̄

−1/p
p and δ1 ≥ 0. Then for the sequence

{xk}k≥1 produced by algorithm (4.1.14), we have the following linear rate
of convergence:

F (xk+1)− F ∗ ≤
(
1− p

p+1 ω̄
−1/p
p + c

)
(F (xk−1)− F ∗). (4.1.27)

Proof. Let us substitute x := xk and y := λx∗ + (1 − λ)xk into (4.1.3),
where λ ≡ ω̄−1/p

p ∈ (0, 1]. This gives

F (xk+1) ≤ λF ∗ + (1− λ)F (xk) + λp+1Lp‖xk−x∗‖p+1

p! + δk+1

≤ λF ∗ + (1− λ)F (xk) + λp+1(p+1)Lp
σp+1p! (F (xk)− F ∗) + δk+1,

where we used uniform convexity. Therefore, for every k ≥ 1:

F (xk+1)− F ∗ ≤
(
1− ω−1/p

p + ω̄−1/p
p

p+1
)
(F (xk)− F ∗) + δk+1

=
(
1− p

p+1 ω̄
−1/p
p

)
(F (xk)− F ∗) + c(F (xk−1)− F (xk))

≤
(
1− p

p+1 ω̄
−1/p
p + c

)
(F (xk−1)− F ∗),

the last inequality uses monotonicity of the method: F (xk) ≤ F (xk−1) and
the bound: F ∗ ≤ F (xk).

Let us pick c = p
2(p+1) ω̄

−1/p
p . Then, according to (4.1.27), in order solve

the problem up to ε-accuracy: F (xK)− F ∗ ≤ ε, we need to perform

K = O
(
ω̄

1/p
p log F (x0)−F∗

ε

)
(4.1.28)

iterations of the algorithm.

Finally, we study the local behaviour of the method for strongly convex
objective.
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Theorem 4.1.7. Let σ2 > 0. Let sequence of inner accuracies {δk}k≥1 be
chosen in accordance to the rule

δk = c ·
(
F (xk−2)− F (xk−1)

) p+1
2 , k ≥ 2 (4.1.29)

with some fixed c ≥ 0 and δ1 ≥ 0. Then for p ≥ 2 the sequence {xk}k≥1
produced by algorithm (4.1.14) has the local superlinear rate of convergence:

F (xk+1)− F ∗ ≤
(
Lp
p!
( 2
σ2

) p+1
2 + c

)
(F (xk−1)− F ∗)

p+1
2 . (4.1.30)

Proof. Let us plug y = x∗ into (4.1.3). Thus, we obtain, for every k ≥ 1:

F (xk+1) ≤ F ∗ + Lp‖xk−x∗‖p+1

p! + δk+1

≤ F ∗ + Lp
p!
( 2
σ2

) p+1
2 (F (xk)− F ∗)

p+1
2 + δk+1

= F ∗ + Lp
p!
( 2
σ2

) p+1
2 (F (xk)− F ∗)

p+1
2 + c(F (xk−1)− F (xk))

p+1
2

≤ F ∗ +
(
Lp
p!
( 2
σ2

) p+1
2 + c

)
(F (xk−1)− F ∗)

p+1
2 ,

where monotonicity of the method: F (xk) ≤ F (xk−1) and the bound: F ∗ ≤
F (xk) are used in the last inequality.

Let us assume for simplicity, that the constant c is chosen to be small
enough: c ≤ Lp

p!
( 2
σ2

)(p+1)/2. Then, we are able to describe the region of
superlinear convergence as

Q =
{
x ∈ domψ : F (x)− F ∗ ≤

(
σp+1

2
2p+3

(
p!
Lp

)2) 1
(p−1)

}
.

After reaching it, the method becomes very fast: we need to perform no
more than O(log log 1

ε ) additional iterations to solve the problem.
Note, that estimate (4.1.30) of the local convergence is slightly weaker

than the corresponding one for exact Tensor Methods (see Section 2.2). For
example, for p = 2 (Cubic regularization of Newton Method) we obtain the
convergence of order 3

2 , not the quadratic, which affects only a constant fac-
tor in the complexity estimate. The region Q of the superlinear convergence
is remaining the same.
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4.1.2 Inexact Methods with Averaging
Methods from the previous section were developed by forcing the monotonic-
ity of the sequence of function values {F (xk)}k≥0 into the scheme. As a
byproduct, we get the radius of the initial level setD0 (see definition (4.1.5))
in the right-hand side of our complexity estimates (4.1.7) and (4.1.16). Note,
that D0 may be significantly bigger than the distance ‖x0 − x∗‖ from the
initial point to the solution.

Example 4.1.8. Consider the following function, for x ∈ Rn:

f(x) = |x(1)|p+1 +
n∑
i=2
|x(i) − 2x(i−1)|p+1,

where x(i) indicates ith coordinate of x. Clearly, the minimum of f is at
the origin: x∗ = (0, . . . , 0)T . Let us take two points: x0 = (1, . . . , 1)T and
x1, such that x(i)

1 = 2i − 1. It holds, f(x0) = f(x1) = n, so they belong to
the same level set. However, we have (for the standard Euclidean norm):
‖x0 − x∗‖ =

√
n, while D0 ≥ ‖x1 − x∗‖ ≥ 2n−1.

Here we present an alternative approach, Tensor Methods with Averag-
ing. In this scheme, we perform a step not from the previous point xk, but
from a point yk, which is a convex combination of the previous point and
the starting point:

yk = λkxk + (1− λk)x0,

where λk ≡
(

k
k+1
)p+1. The whole optimization scheme remains very simple.

Inexact Tensor Method with Averaging

Initialization. Choose x0 ∈ domψ. Fix H = pLp.
Iteration k ≥ 0.

1: Set λk =
(

k
k+1
)p+1, yk = λkxk + (1− λk)x0.

2: Pick up δk+1 ≥ 0.
3: Compute inexact tensor step xk+1 := TH,δk+1(yk).

(4.1.31)

For this method, we are able to prove a similar convergence result as that
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of algorithm (4.1.4). However, now we have the explicit distance ‖x0 − x∗‖
in the right hand side of our bound for the convergence rate (compare with
Theorem 4.1.3).

Theorem 4.1.9. Let sequence of inner accuracies {δk}k≥1 be chosen ac-
cording the rule

δk = c
kp+1 (4.1.32)

for some c ≥ 0. Then for the sequence {xk}k≥1 produced by algorithm (4.1.31),
we have

F (xk)− F ∗ ≤ (p+1)p+1Lp‖x0−x∗‖p+1

p! kp + c
kp . (4.1.33)

Proof. The proof is similar to that one of Theorem 4.1.3. By Lemma 4.1.2,
for every y ∈ domψ, we have

F (xk+1)
(4.1.3)
≤ F (y) + Lp‖y−yk‖p+1

p! + δk+1, k ≥ 0.

Let us substitute y = λkxk + (1− λk)x∗, with λk defined in the algorithm:

λk ≡
(

k
k+1
)p+1

.

Thus we obtain

F (xk+1) ≤ (1− λk)F ∗ + λkF (xk) + (1− λk)p+1 Lp‖x0−x∗‖p+1

p! + δk+1,

or, equivalently

Ak+1(F (xk+1)− F ∗) ≤ Ak(F (xk)− F ∗) + ap+1
k+1
Ap
k+1

Lp‖x0−x∗‖p+1

p!

+ Ak+1δk+1,

where Ak ≡ kp+1 and ak ≡ Ak − Ak−1 (so it holds: λk ≡ Ak/Ak+1
and 1 − λk ≡ ak+1/Ak+1). Telescoping these inequalities and using the
bounds (4.1.10) and (4.1.11) complete the proof.

Thus, algorithm (4.1.31) seems to be the first Primal Tensor method
(aggregating only the points from the primal space E), which admits the
explicit initial distance in the global convergence estimate (4.1.33). Ta-
ble 4.1 contains a short overview of the inexact Tensor methods from this
section.
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Algorithm The rule for δk
Global
rate

Local
superlinear

rate

Tensor Method
(algorithm (1.5.1))

0 O
(LpDp+1

0
kp

)
Yes

Monotone Inexact
Tensor Method, I

(algorithm (4.1.4))
1/kp+1 O

(LpDp+1
0

kp

)
No

Monotone Inexact
Tensor Method, II

(algorithm (4.1.14))
(F (xk−1)− F (xk))α

O
(LpDp+1

0
kp

)
,

α = 1

Yes,

α = p+1
2

Inexact
Tensor Method
with Averaging

(algorithm (4.1.31))

1/kp+1 O
(
Lp‖x0−x∗‖p+1

kp

)
No

Table 4.1: Comparison of the inexact basic Tensor methods.

4.1.3 Acceleration

After the Fast Gradient Method had been discovered in [107], there were
made huge efforts to develop accelerated second-order [111, 101, 61] and
high-order [6, 118, 54, 63, 145] optimization algorithms. Most of these
schemes use the notion of Estimating Sequences (see [117]), that is based on
accumulating the gradients. In our inexact methods we guarantee only the
progress for the objective function. Thus, we study an alternative approach
to accelerate our inexact tensor methods, using the technique of Contracting
Proximal iterations developed in Section 3.3.

In the accelerated scheme, two sequences of points are used: the main
sequence {xk}k≥0, for which we are able to guarantee the convergence in
function residuals, and auxiliary sequence {vk}k≥0 of prox-centers, starting
from the same initial point: v0 = x0. Also, we use the sequence {Ak}k≥0 of
scaling coefficients. Denote ak

def= Ak −Ak−1, k ≥ 1.
Then, at every iteration, we apply Monotone Inexact Tensor Method,

II (algorithm (4.1.14)) to minimize the following contracted objective with
regularization:

hk+1(x) def= Ak+1f
(ak+1x+Akxk

Ak+1

)
+ ak+1ψ(x)

+ βd(vk;x).

Here βd(vk;x) def= d(x) − d(vk) − 〈∇d(vk), x − vk〉 is Bregman divergence
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centered at vk, for the following choice of prox-function:

d(x) ≡ 1
p+1‖x− x0‖p+1,

which is uniformly convex of degree p+1 (Lemma 2.1.4). Therefore, inexact
Tensor Method achieves fast linear rate of convergence (Theorem 4.1.6). By
an appropriate choice of scaling coefficients {Ak}k≥1, we are able to make
the condition number of the subproblem being an absolute constant. This
means that only Õ(1) steps of algorithm (4.1.14) are needed to find an
approximate minimizer of hk+1(·):

hk+1(vk+1)− h∗k+1 ≤ ζk+1. (4.1.34)

Note that inexact condition (4.1.34) differs from the that one from Sec-
tion 3.3, where a bound for the (sub)gradient norm was used. The bound
for the residual in function value is easier to ensure by our methods. The
price that we pay is a more difficult analysis. Also, it can be not easy to
choose a stopping condition for the inner method.

Accelerated Scheme

Initialization. Choose x0 ∈ domψ. Set v0 = x0, A0 = 0.
Iteration k ≥ 0.

1: Set Ak+1 = (k+1)p+1

Lp
.

2: Pick up ζk+1 ≥ 0.
3: Find vk+1 such that (4.1.34) holds.
4: Set xk+1 = ak+1vk+1+Akxk

Ak+1
.

(4.1.35)

Therefore, for accelerating inexact Tensor Methods, we propose a multi-
level approach. On the upper level, we run algorithm (4.1.35). At each
iteration of this method, we call algorithm (4.1.14) to find vk+1.

Theorem 4.1.10. Let sequence {ζk}k≥1 be chosen according to the rule

ζk = c
kp+2 (4.1.36)
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with some c ≥ 0. Then for the iterations {xk}k≥1 produced by algorithm
(4.1.35), it holds:

F (xk)− F ∗ ≤ O
(
Lp(‖x0−x∗‖p+1+c)

kp+1

)
. (4.1.37)

For every k ≥ 0, in order to find vk+1 by algorithm (4.1.14) (for minimizing
hk+1(·), starting from vk), it is enough to perform no more than

O
(

log (k+1)(‖x0−x∗‖p+1+c)
c

)
. (4.1.38)

inexact monotone tensor steps.

Proof. The proof is similar to that one of Theorem 3.3.4, where convergence
rate of the Contracting Proximal Method is established. Additional techni-
cal difficulties, which are arising here, are caused by using inexact solution
of the subproblem, equipped with the stopping condition (4.1.34).

We denote the optimal point of hk+1(·) by zk+1
def= argminy hk+1(y).

Since the next prox-center vk+1 is defined as an approximate minimizer, we
have

hk+1(vk+1)− hk+1(zk+1) ≤ ζk+1. (4.1.39)

Function hk+1(·) is strongly convex with respect to d(·), thus we have

ζk+1
(4.1.39)
≥ hk+1(vk+1)− hk+1(zk+1) ≥ βd(zk+1; vk+1)

≥ 1
2p−1(p+1)‖vk+1 − zk+1‖p+1.

(4.1.40)

Therefore,

‖vk+1 − zk+1‖
(4.1.40)
≤ ξk+1

def= 2
p−1
p+1 (p+ 1)

1
p+1 ζ

1
p+1
k+1 .

(4.1.41)

Let us prove by induction the following inequality, for every k ≥ 0 and
all x ∈ domψ:

βd(x0;x) +AkF (x) ≥ βd(vk;x) +AkF (xk) + Ck(x), (4.1.42)

where Ck(x) def= −
k∑
i=1

(
τi‖x − vi‖ + ζi

)
, and τi

def= p2p−2‖zi − x0‖p−1ξi +

2p−2ξpi .
It obviously holds for k = 0. Assume that it holds for the current iterate,
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and consider the next step k + 1:

βd(x0;x) +Ak+1F (x)

= βd(x0;x) +AkF (x) + ak+1F (x)

(4.1.42)
≥ βd(vk;x) +AkF (xk) + ak+1F (x) + Ck(x)

≥ βd(vk;x) +Ak+1f
(ak+1x+Akxk

Ak+1

)
+ ak+1ψ(x) +Akψ(xk) + Ck(x)

= hk+1(x) +Akψ(xk) + Ck(x),

(4.1.43)

where the last inequality holds by convexity of f .
Using the strong convexity of hk+1(·) with respect to d(·), we obtain

hk+1(x) ≥ hk+1(zk+1) + βd(zk+1;x)

(4.1.39)
≥ hk+1(vk+1) + βd(zk+1;x)− ζk+1

= hk+1(vk+1) + βd(vk+1;x) + βd(zk+1; vk+1)

+ 〈∇d(vk+1)−∇d(zk+1), x− vk+1〉 − ζk+1

≥ hk+1(vk+1) + βd(vk+1;x)− ζk+1

− ‖∇d(vk+1)−∇d(zk+1)‖∗ · ‖x− vk+1‖.

(4.1.44)

Now, computing the second derivative of d(x) = 1
p+1‖x−x0‖p+1, we get

∇2d(x) = (p− 1)‖x− x0‖p−3B(x− x0)(x− x0)∗B

+ ‖x− x0‖p−1B � p‖x− x0‖p−1B.
(4.1.45)

Note that for every a, b ≥ 0 and integer p ≥ 1 it holds that

(a+ b)p−1 ≤ 2p−2ap−1 + 2p−2bp−1. (4.1.46)

For p = 1 this is trivial. For p ≥ 2 it holds by convexity of the one-
dimensional function y(x) = xp−1, x ≥ 0.

Therefore,
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‖∇d(vk+1)−∇d(zk+1)‖∗

= ‖
1∫
0
∇2d(zk+1 + τ(vk+1 − zk+1))dτ(vk+1 − zk+1)‖∗

(4.1.41)
≤ ξk+1

1∫
0
‖∇2d(zk+1 + τ(vk+1 − zk+1))‖dτ

(4.1.45)
≤ pξk+1

1∫
0
‖zk+1 − x0 + τ(vk+1 − zk+1)‖p−1dτ

(4.1.46),(4.1.41)
≤ pξk+1

1∫
0

(
2p−2‖zk+1 − x0‖p−1 + 2p−2τp−1ξp−1

k+1
)
dτ

= p2p−2‖zk+1 − x0‖p−1ξk+1 + 2p−2ξpk+1
def= τk+1.

(4.1.47)

Combining the obtained bounds together, we conclude

βd(x0;x) +Ak+1F (x)
(4.1.43)
≥ hk+1(x) +Akψ(xk) + Ck(x)

(4.1.44),(4.1.47)
≥ hk+1(vk+1) + βd(vk+1;x)− τk+1‖x− vk+1‖

− ζk+1 +Akψ(xk) + Ck(x)

= hk+1(vk+1) + βd(vk+1;x) +Akψ(xk) + Ck+1(x)

= Ak+1f(xk+1) + ak+1ψ(vk+1) + βd(vk; vk+1)

+ βd(vk+1;x) +Akψ(xk) + Ck+1(x)

≥ Ak+1F (xk+1) + βd(vk+1;x) + Ck+1(x).

Thus, (4.1.42) is proven. Let us plug x := x∗ into (4.1.42). We obtain

βd(vk;x∗) +Ak(F (xk)− F ∗)
(4.1.42)
≤ βd(x0;x∗)− Ck(x∗)

= βd(x0;x∗) +
k∑
i=1

ζi +
k∑
i=1

τi‖vi − x∗‖

(1.3.9)
≤ βd(x0;x∗) + c(p+2)

p+1 +
k∑
i=1

τi‖vi − x∗‖
def= αk,

(4.1.48)
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and to finish the proof, we need to estimate αk from above. By uniform
convexity of d(·), we have

1
2p−1(p+1)‖vk − x

∗‖p+1 ≤ βd(vk;x∗)
(4.1.48)
≤ αk. (4.1.49)

At the same time,

αk = αk−1 + τk‖vk − x∗‖
(4.1.49)
≤ αk−1 + 2

p−1
p+1 (p+ 1)

1
p+1 τkα

1
p+1
k .

By dividing both sides of the last inequality by α
1
p+1
k , and by using mono-

tonicity of {αk}k≥0, we get

α
p
p+1
k ≤ α

p
p+1
k−1 + 2

p−1
p+1 (p+ 1)

1
p+1 τk.

Therefore,

αk ≤
(
α

p
p+1
0 + 2

p−1
p+1 (p+ 1)

1
p+1

k∑
i=1

τi

) p+1
p

. (4.1.50)

To finish, it remains to bound the sum of τi, which is

k∑
i=1

τi =
k∑
i=1

(p2p−2‖zi − x0‖p−1ξi + 2p−2ξpi )

(4.1.46)
≤

k∑
i=1

4p−2(p‖zi − x∗‖p−1ξi + p‖x0 − x∗‖p−1ξi + ξp
i

2p−2 )

(4.1.41)= p4p−2
k∑
i=1
‖zi − x∗‖p−1ξi

+ p(p+ 1)
1
p+1 2

p−1
p+1 4p−2‖x0 − x∗‖p−1

k∑
i=1

ζ
1
p+1
i

+ 2p−22
(p−1)p
p+1 (p+ 1)

p
p+1

k∑
i=1

ζ
p
p+1
i

(1.3.9)
≤ p4p−2

k∑
i=1
‖zi − x∗‖p−1ξi + ∆1,

(4.1.51)

where

∆1
def= p(p+ 1)

1
p+1 2

p−1
p+1 4p−2‖x0 − x∗‖p−1c

1
p+1 (p+ 2)

+ 2p−22
(p−1)p
p+1 (p+ 1)

p
p+1 c

p
p+1 (p+2)p

(p+2)p−p−1 ,
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and we need to bound ‖zi − x∗‖ from above.

By substituting x := x∗ into (4.1.43), we have

βd(x0;x∗) +Ak+1F
∗

(4.1.43)
≥ hk+1(x∗) +Akψ(xk) + Ck(x∗)

≥ hk+1(zk+1) + βd(zk+1;x∗) +Akψ(xk) + Ck(x∗)

≥ Ak+1F
(ak+1zk+1+Akxk

Ak+1

)
+ βd(zk+1;x∗) + Ck(x∗).

(4.1.52)

Hence,

1
2p−1(p+1)‖zk+1 − x∗‖p+1 ≤ βd(zk+1;x∗)

(4.1.52)
≤ βd(x0;x∗)− Ck(x∗) ≤ αk

(4.1.50),(4.1.51)
≤

(
∆2 + ∆3

k∑
i=1
‖zi − x∗‖p−1ξi

) p+1
p ,

(4.1.53)

with

∆2
def= α

p
p+1
0 + 2

p−1
p+1 (p+ 1)

1
p+1 ∆1, and ∆3

def= 2
p−1
p+1 (p+ 1)

1
p+1 p4p−2.

For the monotone sequence γk
def= ∆2 + ∆3

k∑
i=1
‖zi − x∗‖p−1ξi, it holds

γk+1 = γk + ∆3‖zk+1 − x∗‖p−1ξk+1

(4.1.53)
≤ γk + ∆32

(p−1)2
p+1 (p+ 1)

p−1
p+1 γ

p−1
p

k ξk+1

≤ γk + ∆32
(p−1)2
p+1 (p+ 1)

p−1
p+1 γ

p−1
p

k+1 ξk+1.

By dividing both sides by γ
p−1
p

k+1 , and by using monotonicity again, we obtain

γ
1
p

k+1 ≤ γ
1
p

k + ∆32
(p−1)2
p+1 (p+ 1)

p−1
p+1 ξk+1, (4.1.54)

181



Chapter 4. Inexact and Stochastic Algorithms

Telescoping which, gives

α
1
p+1
k

(4.1.53)
≤ γ

1
p

k

(4.1.54)
≤ γ

1
p

0 + ∆32
(p−1)2
p+1 (p+ 1)

p−1
p+1

k∑
i=1

ξi

= ∆
1
p

2 + ∆32
(p−1)p
p+1 (p+ 1)

p
p+1

k∑
i=1

ζ
1
p+1
i

(1.3.9)
≤ ∆

1
p

2 + ∆32
(p−1)p
p+1 (p+ 1)

p
p+1 c

1
p+1 (p+ 2).

(4.1.55)

Note that

∆1 ≤ O
(
‖x0 − x∗‖p−1c

1
p+1 + c

p
p+1

)
≤ O

(
‖x0 − x∗‖p + c

p
p+1

)
,

where we used Young’s inequality for products, and

∆2 ≤ O
(
α

p
p+1
0 + ∆1

)
≤ O

(
‖x0 − x∗‖p + c

p
p+1

)
,

while
∆3 ≤ O(1).

Hence, from (4.1.55) we conclude that

αk ≤ O
(
‖x0 − x∗‖p+1 + c

)
. (4.1.56)

Finally,

F (xk)− F ∗
(4.1.48)
≤ αk

Ak

(4.1.56)
≤ O

(Lp(‖x0−x∗‖p+1+c)
kp+1

)
.
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Lastly, let us prove bound (4.1.38) for the number of tensor steps, needed
to find vk+1. We minimize hk+1(·), starting from the previous prox-point
vk. We denote the first component of hk+1(·), by:

gk+1(x) def= Ak+1f
(ak+1x+Akxk

Ak+1

)
,

which is a contracted version of the smooth part of our objective F (x).
Direct computation gives the following relation between Lipschitz constants
for the derivatives of gk+1 and f :

Lp(gk+1) = ap+1
k+1
Ap
k+1

Lp(f) = ((k+1)p+1−kp+1)p+1

(k+1)p(p+1)

≤ ((p+1)(k+1)p)p+1

(k+1)p(p+1) = (p+ 1)p+1.

(4.1.57)

Therefore, condition number ω̄p (4.1.25) for hk+1 is bounded by an ab-
solute constant, and we need to estimate only the value under the loga-
rithm in (4.1.28). Due to Lemma 4.1.2, one monotone inexact tensor step
M := MH,δ(vk) for function hk+1(·) with constant H := pLp(gk+1) gives,
for all y ∈ domψ:

hk+1(M)
(4.1.3),(4.1.57)

≤ hk+1(y) + (p+1)p+1‖y−vk‖p+1

p! + δ. (4.1.58)
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If substitute y := x∗ (minimizer of F ) into (4.1.58), then we obtain

hk+1(M)− h∗k+1

(4.1.58)
≤ hk+1(x∗)− h∗k+1 + (p+1)p+1‖vk−x∗‖p+1

p! + δ

(4.1.43)
≤ Ak+1F

∗ −Akψ(xk) + βd(x0;x∗)− Ck(x∗)− h∗k+1

+ (p+1)p+1‖vk−x∗‖p+1

p! + δ

(4.1.48),(4.1.49)
≤ Ak+1F

∗ −Akψ(xk)− h∗k+1 +
(
1 + (p+1)p+22p−1

p!
)
αk + δ

= Ak+1F
∗ −min

y

{
hk+1(y) +Akψ(xk)

}
+
(
1 + (p+1)p+22p−1

p!
)
αk + δ

≤ Ak+1F
∗ −min

y

{
Ak+1F

(ak+1y+Akxk
Ak+1

)
+ βd(vk; y)

}
+
(
1 + (p+1)p+22p−1

p!
)
αk + δ

≤ Ak+1F
∗ −min

y

{
Ak+1F

(ak+1y+Akxk
Ak+1

)}
+
(
1 + (p+1)p+22p−1

p!
)
αk + δ

=
(
1 + (p+1)p+22p−1

p!
)
αk + δ

(4.1.55)
≤ O

(
‖x0 − x∗‖p+1 + c+ δ

)
.

So, if we set δ := c and perform just one step of the monotone inexact tensor
method for hk+1(·), the remaining amount of steps Nk needed to find vk+1,
such that (4.1.34) holds, is bounded as:

Nk
(4.1.28)
≤ O

(
log hk+1(M)−h∗k+1

ζk+1

)
≤ O

(
log k(‖x0−x∗‖p+1+c)

c

)
. �

Therefore, the total number of the inexact tensor steps for finding an ε-
solution of the problem is bounded by Õ

(
1/ε

1
p+1
)
. One theoretical question

remains open: is it possible to construct in the framework of inexact tensor
steps, the optimal methods with the complexity O

(
1/ε

2
3p+1

)
having no hid-

den logarithmic factors. This would match the existing lower bound [4, 118].
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4.1.4 Experiments

We now show computational results with empirical study of different accu-
racy policies. We consider inexact methods of order p = 2 (Cubic regulariza-
tion of Newton method), and to solve the corresponding subproblem we use
the flexible version of the Fast Gradient Method with restarts from [119]. To
estimate the residual in function value of the subproblem, we use a simple
stopping criterion, given by uniform convexity of the model g(y) = ΩH(x; y):

g(y)−min
y
g(y) ≤ 4

3
( 1
H

)1/2 ‖∇g(y)‖3/2∗ . (4.1.59)

An alternative approach would be to bound the functional residual by the
duality gap1.

We compare the adaptive rule for inner accuracies (4.1.15) with dynamic
strategies in the form δk = 1/kα, for different α (left graphs), and with the
constant choices (right).

Logistic Regression. First, let us consider the problem of training `2-
regularized logistic regression model for classification task with two classes,
on several real datasets2: mushrooms (m = 8124, n = 112), w8a (m =
49749, n = 300), and a8a (m = 22696, n = 123)3.

We use the standard Euclidean norm for this problem, and simple line
search at every iteration, to fit the regularization parameter H. The results
are shown in Figure 4.1.

Log-Sum-Exp. In the next set of experiments, we consider unconstrained
minimization of the following objective:

fµ(x) = µ log
(
m∑
i=1

exp
(
〈ai,x〉−bi

µ

))
, x ∈ Rn,

where µ > 0 is a smoothing parameter. To generate the data, we sample
coefficients {ãi}mi=1 and b randomly from the uniform distribution on [−1, 1].
Then, we shift the parameters in a way to have the solution x∗ in the

1Note that the left hand side in (4.1.59) can be bounded from below by the distance
from y to the optimum of the model, using uniform convexity. Therefore, we have a
computable bound for the distance to the solution of the subproblem.

2https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
3m is the number of training examples and n is the dimension of the problem (the

number of features).
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Figure 4.1: Comparison of different accuracy policies for the inexact Cubic
Newton, training logistic regression.

origin. Namely, using {ãi}mi=1 we form a preliminary function f̃µ(x), and
set ai := ãi −∇f̃µ(0). Thus we essentially obtain ∇fµ(0) = 0.

We set m = 6n, and n = 100. In the method, we use the following
Euclidean norm for the primal space: ‖x‖ = 〈Bx, x〉1/2, with the matrix
B =

∑m
i=1 aia

T
i , and fix regularization parameter H being equal 1. The

results are shown in Figure 4.2.
We see that the adaptive rule demonstrates reasonably good perfor-

mance (in terms of the total computational time4) in all the scenarios.

4CPU time was evaluated on a machine with Intel Core i5 CPU, 1.6GHz; 8 GB RAM.
All methods have been implemented in Python 3.7.1. Operation system: macOS 10.15.
The source code can be found at https://github.com/doikov/dynamic-accuracies/
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Figure 4.2: Comparison of different accuracy policies for the inexact Cubic
Newton, minimizing Log-sum-exp function.

Exact Stopping Criterion. In the following set of experiments with Cu-
bic Newton method, we compute the exact minimizer of the model (4.1.1),
at every iteration. Then, we use this value to ensure the required precision
in function value of the subproblem for the inexact step (in the previous
settings we used the upper bound (4.1.59) for this purpose). The results
for Log-Sum-Exp function are shown in Figures 4.3 – 4.6. The results for
Logistic regression are shown in Figures 4.7 – 4.11.

We compare the iteration rate and the corresponding number of Hessian-
vector products used, for the constant choice of inner accuracy (top left
graphs), dynamic strategies in the form δk = 1/kα (top right), and adaptive
strategies δk = (F (xk−1) − F (xk))α (center graphs). We use the names
"adaptive", "adaptive 1.5" and "adaptive 2" for α = 1, α = 3/2, and α = 2,
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respectively.
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Figure 4.3: Exact stopping criterion, Log-sum-exp, n = 100, µ = 0.1.

0 200 400
Iterations

10 7

10 5

10 3

10 1

101

Fu
nc

tio
na

l r
es

id
ua

l

0 20000 40000
Hessian-vector products

10 7

10 5

10 3

10 1

101

10 2

10 4

10 6

10 8

Log-sum-exp, = 0.05: constant strategies

0 200 400
Iterations

10 7

10 5

10 3

10 1

101

Fu
nc

tio
na

l r
es

id
ua

l

0 20000 40000
Hessian-vector products

10 7

10 5

10 3

10 1

101 1/k
1/k2

1/k3

1/k4

10 8

Log-sum-exp, = 0.05: dynamic strategies

0 50 100
Iterations

10 9

10 7

10 5

10 3

10 1

101

Fu
nc

tio
na

l r
es

id
ua

l

0 20000 40000
Hessian-vector products

10 9

10 7

10 5

10 3

10 1

101

adaptive
adaptive 1.5
adaptive 2
10 8

Log-sum-exp, = 0.05: adaptive strategies

Figure 4.4: Exact stopping criterion, Log-sum-exp, n = 100, µ = 0.05.
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Figure 4.5: Exact stopping criterion, Log-sum-exp, n = 200, µ = 0.1.
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Figure 4.6: Exact stopping criterion, Log-sum-exp, n = 200, µ = 0.05.
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Figure 4.7: Exact stopping criterion, logistic regression, mushrooms.
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Figure 4.8: Exact stopping criterion, logistic regression, w8a.
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Figure 4.9: Exact stopping criterion, logistic regression, a8a.
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Figure 4.10: Exact stopping criterion, logistic regression, phishing.
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Figure 4.11: Exact stopping criterion, logistic regression, splice.

We see that the constant choice of inner accuracy reasonably depends on
the desired precision for solving the initial problem. At the same time, the
dynamic strategies are adjusting with the iterations. The best performance
is achieved by the use of the adaptive policies. It is also important that in
some cases we need to use "adaptive 1.5" or "adaptive 2" strategy, to have
the local superlinear convergence. This confirms our theory.

Averaging and Acceleration. In this experiment, we consider uncon-
strained minimization of the following objective (x(i) indicates ith coordi-
nate of x)

f(x) = |x(1)|3 +
n∑
i=2
|x(i) − x(i−1)|3, x ∈ Rn, (4.1.60)

by different inexact Newton methods. Note, that the structure of (4.1.60) is
similar to that one of the worst function for the second-order methods (see
Chapter 4.3.1 in [117]). It is also similar to the function from Example 4.1.8.

We compare iteration rates of the following algorithms: Cubic New-
ton (CN) with dynamic rule δk = 1/k3, Cubic Newton with adaptive
rule (4.1.15), the method with Averaging (algorithm (4.1.31)) with δk =
1/k3, and the accelerated method with Contracting proximal iterations (al-
gorithm (4.1.35)). For the latter one we use ζk = 1/k and δk = 1/k, as
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4.1. Inexact Tensor Methods with Dynamic Inner Accuracies

the rules for choosing the accuracy of inexact (outer) proximal steps, and
inexact (inner) Newton steps, respectively.5

For the first three algorithms, we also compare the constant choice for
the regularization parameter: H = 1 (on the top graphs), and a simple line
search6 for choosing H at every iteration (bottom). The results are shown
in Figure 4.12.
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Figure 4.12: Methods with averaging and acceleration.

We see that all the methods have a sublinear rate of convergence, until
the iteration counter is smaller than the dimension of the problem. The use
of the line search significantly helps for improving the rate. Thus, it seems
to be an important open question (which we keep for the further research)
— to equip the contracting proximal scheme (algorithm (4.1.35)) with a
variant of line search as well.

5In our experiments, there is no need of high precision for the inexact contracting
proximal steps. A faster decrease of δk did not improve the rate of convergence.

6Namely, we multiply H by the factor of two, until condition F (TH,δ(xk)) ≤
MH(xk;TH,δ(xk)) is satisfied. At the next iteration, we start the line search from the
previous estimate of H, divided by two. See also algorithm (2.1.22) in Chapter 2.
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4.2 Inexact Contracting Newton Method

The Contracting Newton Method (3.2.10) was developed for solving the
composite convex minimization problem,

min
x∈domψ

{
F (x) = f(x) + ψ(x)

}
with bounded domain of ψ. Therefore, we assume that domψ is a compact
convex set. At each iteration of the method, we need to find a solution to
the following auxiliary subproblem:

min
y

{
〈∇f(xk), y − xk〉+ γk

2 〈∇
2f(xk)(y − xk), y − xk〉+ ψ(y)

}
,

where γk ∈ (0, 1] is a contraction parameter and xk is the current iterate.
This is minimization of the quadratic function over the composite part, and
it can be nontrivial to solve for a general ψ.

The subproblem with linear objective is usually called the linear mini-
mization oracle for ψ, that is for a certain s ∈ E∗:

min
y

{
〈s, y〉+ ψ(y)

}
. (4.2.1)

Clearly, this is much easier to solve than the previous one. In this section,
we investigate the idea of performing inexact Contracting Newton steps by
using only the operations of type (4.2.1).

Let us recall the affine-invariant smoothness characteristics of the objec-
tive, introduced in Section 3.1.2.

∆(2,1)
domψ(f) def= sup

x,v∈domψ,
t∈(0,1]

1
t3

∣∣∣f(x+ t(v − x))− f(x)

− t〈∇f(x), v − x〉 − t2

2 〈∇
2f(x)(v − x), v − x〉

∣∣∣
(3.1.15)
≤ 1

6V
(3)
domψ(f) def= sup

x,y,v∈domψ

1
6 |D

3f(y)[v − x]3|,

and
V(2)

domψ(f) def= sup
x,y,v∈domψ

|D2f(y)[v − x]2|.

In Section 4.2.1 we present an implementation of the Contracting New-
ton, when at each step we solve the subproblem inexactly by a variant of
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4.2. Inexact Contracting Newton Method

first-order Conditional Gradient Method. In Section 4.2.2 we address effec-
tive implementation of our algorithm for the standard Simplex. Section 4.2.3
contains numerical experiments.

4.2.1 Two-Level Scheme

The entire algorithm looks as follows.

Inexact Contracting-Point Newton Method

Initialization. Choose x0 ∈ domψ, c > 0.

Iteration k ≥ 0.

1: Choose γk ∈ (0, 1].

2: Denote the subproblem objective:

gk(v) = 〈∇f(xk), v − xk〉+ γk
2 〈∇

2f(xk)(v − xk), v − xk〉.

3: Initialize inner method t = 0, z0 = xk, φ0(w) ≡ 0.

4-a: Set αt = 2
t+2 .

4-b: Set φt+1(w) = αt
[
gk(zt) + 〈∇gk(zt), w − zt〉+ ψ(w)

]
+ (1− αt)φt(w).

4-c: Compute wt+1 ∈ Argmin
w

φt+1(w).

4-d: Set zt+1 = αtwt+1 + (1− αt)zt.

4-e: If gk(zt+1) + ψ(zt+1)− φt+1(wt+1) > cγ2
k, then

Set t = t+ 1 and go to 4-a, else go to 5.

5: Set x̄k+1 = γkzt+1 + (1− γk)xk.

6: If F (x̄k+1) ≤ F (xk), then set xk+1 = x̄k+1.
Else choose xk+1 = xk.

(4.2.2)
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We provide an analysis of the total number of oracle calls for f (step 2)
and the total number of linear minimization oracle calls for the composite
component ψ (step 4-c), required to solve the initial problem up to the given
accuracy level.

Theorem 4.2.1. Let γk = 3
k+3 . Then, for iterations {xk}k≥1 generated by

method (4.2.2), we have

F (xk)− F ∗ ≤ 27 ·
(
c+ 2∆(2,1)

domψ(f)
)
· k−2. (4.2.3)

Therefore, for any ε > 0, it is enough to perform

K =
⌈√

27(c+2∆(2,1)
domψ

(f))
ε

⌉
(4.2.4)

iterations of the method, in order to get F (xK) − F ∗ ≤ ε. And the total
number NK of linear minimization oracle calls during these iterations is
bounded as

NK ≤ 2 ·
(

1 + 2V(2)
domψ

(f)
c

)
·
(

1 + 27(c+2∆(2,1)
domψ

(f))
ε

)
. (4.2.5)

Proof. Let us fix arbitrary iteration k ≥ 0 of our method and consider the
following objective:

mk(v) = gk(v) + ψ(v)

= 〈∇f(xk), v − xk〉+ γk
2 〈∇

2f(xk)(v − xk), v − xk〉+ ψ(v).

We need to find a point v̄k+1 such that

mk(v̄k+1)−m∗k ≤ cγ2
k. (4.2.6)

Note that if we set x̄k+1 := γkv̄k+1 + (1 − γk)xk, then from (4.2.6) we
have bound (3.1.21) satisfied with ξk+1 = cγ3

k. Thus we get one step of
algorithm (3.1.22) for p = 2, and Theorem 3.1.9 gives the required rate
of convergence (4.2.3). We are about to show that steps 4-a – 4-e of our
algorithm aim to find such a point v̄k+1.

Let us introduce the auxiliary sequences At
def= t · (t + 1) and at+1

def=
At+1 −At for t ≥ 0. Then, αt ≡ at+1

At+1
, and we have the following represen-
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tation of the Estimating Functions, for every t ≥ 0

φt+1(w) = 1
At+1

t∑
i=0

ai+1

[
gk(zi) + 〈∇gk(zi), w − zi〉+ ψ(w)

]
.

By convexity of gk(·), we have

mk(w) ≥ φt+1(w), w ∈ domψ.

Therefore, we obtain the following upper bound for the residual (4.2.6), for
any v ∈ domψ

mk(v)−m∗k ≤ mk(v)− φ∗t+1, (4.2.7)

where φ∗t+1 = minw φt+1(w) = φt+1(wt+1).

Now, let us show by induction, that

Atφ
∗
t ≥ Atmk(zt) − Bt, t ≥ 0, (4.2.8)

for Bt := γkV(2)
domψ

h(f)
2

∑t
i=0

a2
i+1
Ai+1

. It obviously holds for t = 0. Assume that
it holds for some t ≥ 0. Then,

At+1φ
∗
t+1 = At+1φt+1(wt+1)

= Atφt(wt+1) + at+1
[
gk(zt) + 〈∇gk(zt), wt+1 − zt〉+ ψ(wt+1)

]
(4.2.8)
≥ Atmk(zt) + at+1

[
gk(zt) + 〈∇gk(zt), wt+1 − zt〉+ ψ(wt+1)

]
−Bt

= At+1

[
gk(zt) + αt〈∇gk(zt), wt+1 − zt〉+ αtψ(wt+1)

+ (1− αt)ψ(zt)
]
−Bt

≥ At+1

[
gk(zt) + αt〈∇gk(zt), wt+1 − zt〉+ ψ(zt+1)

]
−Bt.

Note that

gk(zt+1) = gk(zt + αt(wt+1 − zt))

= gk(zt) + αt〈∇gk(zt), wt+1 − zt〉

+ α2
tγk
2 〈∇

2f(xk)(wt+1 − zt), wt+1 − zt〉.
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Therefore, we obtain

At+1φ
∗
t+1 ≥ At+1mk(zt+1)−Bt −

a2
t+1
At+1

· γkV
(2)
domψ

(f)
2 ,

and this is (4.2.8) for the next step. Therefore, we have (4.2.8) established
for all t ≥ 0.

Combining (4.2.7) with (4.2.8), we get the following guarantee for the
inner steps 4-a – 4-e:

mk(zt+1)−m∗k ≤ mk(zt+1)− φ∗t+1 ≤
γkV(2)

domψ
(f)

2At+1

t∑
i=0

a2
i+1
Ai+1

≤ 2γkV(2)
domψ

(f)
t+1 .

Therefore, all iterations of our method are well-defined. We exit from the
inner loop on step 4-e after

t ≥ 2V(2)
domψ

(f)
cγk

− 1 = 2(k+3)V(2)
domψ

(f)
3c − 1, (4.2.9)

and the point v̄k+1 ≡ zt+1 satisfies (4.2.6).

Hence, we obtain (4.2.3) and (4.2.4). The total number of linear mini-
mization oracle calls can be estimated as follows

NK
(4.2.9)
≤

K−1∑
k=0

(
1 + 2(k+3)V(2)

domψ
(f)

3c

)
= K

(
1 + V(2)

domψ
(f)

3c
(
K + 5

))

≤ K2
(

1 + 2V(2)
domψ

(f)
c

)
≤ 2 ·

(
1 + 2V(2)

domψ
(f)

c

)
·
(

1 + 27(c+2∆(2,1)
domψ

(f))
ε

)
. �

According to the result of Theorem 4.2.1, in order to solve the initial
problem up to ε > 0 accuracy, we need to perform O( 1

ε ) total computations
of step 4-c of the method (estimate (4.2.5)). This is the same amount
of linear minimization oracle calls, as required in the classical Frank-Wolfe
algorithm (the case p = 1 of the Contracting-Point Tensor Method (3.1.22)).
However, this estimate can be over-pessimistic for our two-level scheme.
Indeed, it comes as the product of the worst-case complexity bounds for
the outer and the inner optimization processes. It seems to be very rare to
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meet with the worst-case instance at the both levels simultaneously. Thus,
the practical performance of our method can be much better.

At the same time, the total number of gradient and Hessian computa-
tions is only O( 1

ε1/2 ) (estimate (4.2.4)). This can lead to a significant accel-
eration over first-order Frank-Wolfe algorithm, when the gradient computa-
tion is a bottleneck (see our experimental comparison in the next section).

The only parameter which remains to choose in method (4.2.2), is the
tolerance constant c > 0. Note that the right hand side of (4.2.5) is convex
in c. Hence, its approximate minimization provides us with the following
choice

c = 2
√
V(2)

domψ(f) ∆(2,1)
domψ(f).

In practical applications, we may not know some of these constants. How-
ever, in many cases they are small. Therefore, an appropriate choice of c is
a small constant.

Note that the only use of the Hessian in our method is step 4-b, that
computes a Hessian-vector product. This operation can be implemented by
using the first-order oracle (see Section 1.6), and thus method (4.2.2) can
be viewed as a first-order scheme. A proper implementation of the method
must take into account the structure of the problem, such as sparsity of the
Hessian and geometry of the domain.

4.2.2 Minimization over the Simplex

Let us discuss efficient implementation of our method, when the composite
part is {0,+∞}-indicator of the standard simplex:

domψ = Sn
def=

{
x ∈ Rn+ :

n∑
i=1

x(i) = 1
}
. (4.2.10)

This is an example of the set with finite number of atoms, which are the
standard coordinate vectors in this case:

Sn = Conv {e1, . . . , en}.

See [73] for more examples of atomic sets in the context of the Frank-Wolfe
algorithm. The maximization of a convex function over such sets can be
implemented very efficiently, since the maximum is always at the corner
(one of the atoms).

At iteration k ≥ 0 of method (4.2.2), we need to minimize over Sn the
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quadratic function

gk(v) = 〈∇f(xk), v − xk〉+ γk
2 〈∇

2f(xk)(v − xk), v − xk〉,

whose gradient is

∇gk(v) = ∇f(xk) + γk∇2f(xk)(v − xk).

Assume that we keep the vector ∇gk(zt) ∈ Rn for the current point zt, t ≥ 0
of the inner process, as well as its aggregation

ht
def= αt∇gk(zt) + (1− αt)ht−1, h−1

def= 0 ∈ Rn.

Then, at step 4-c we need to compute a vector

wt+1 ∈ Argmin
w∈Sn

〈ht, w〉 = Conv
{
ej : j ∈ Argmin

1≤j≤n
h

(j)
t

}
.

It is enough to find an index j of a minimal element of ht and to set wt+1 :=
ej . The new gradient is equal to

∇gk(zt+1) Step 4-d= ∇gk(αtwt+1 + (1− αt)zt)

= αt

(
∇f(xk) + γk∇2f(xk)(ej − xk)

)
+ (1− αt)∇gk(zt),

and the function value can be expressed using the gradient as follows

gk(zt+1) = 1
2 〈∇f(xk) +∇gk(zt+1), zt+1 − xk〉.

The product ∇2f(xk)ej is just j-th column of the matrix. Hence, prepar-
ing in advance the following objects: ∇f(xk) ∈ Rn, ∇2f(xk) ∈ Rn×n and
the Hessian-vector product ∇2f(xk)xk ∈ Rn, we are able to perform itera-
tion of the inner loop (steps 4-a – 4-e) very efficiently in O(n) arithmetical
operations.
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4.2.3 Experiments
Let us consider the problem of minimizing the log-sum-exp function (Soft-
Max)

fµ(x) = µ log
(
m∑
i=1

exp
(
〈ai,x〉−bi

µ

))
, x ∈ Rn,

over the standard simplex Sn (4.2.10). Coefficients {ai}mi=1 and b are gen-
erated randomly from the uniform distribution on [−1, 1]. We compare the
performance of the Inexact Contracting-Point Newton Method (4.2.2) with
that one of the classical Frank-Wolfe algorithm, for different values of the
parameters.

The results are shown in Figures 4.13 – 4.15.
For fair comparison, we use the Frank-Wolfe algorithm with a predefined

sequence of step sizes. It is known that the use of a line search can improve
the empirical rate of convergence. It seems to be an important task to equip
the Contracting Newton with efficient line search procedure, which we keep
for further investigation.

We see that the new method works significantly better in terms of the
outer iterations (oracle calls). This confirms our theory.

At the same time, for many values of the parameters, it shows better
performance in terms of the total computational time as well7.

7CPU time was evaluated on a machine with Intel Core i5 CPU, 1.6GHz; 8 GB RAM.
The methods have been implemented in Python 3.7.1. Operation system: macOS 10.15.
The source code can be found at https://github.com/doikov/logsumexp-simplex/
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Figure 4.13: n = 100, m = 1000.
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Figure 4.14: n = 100, m = 2500.
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Figure 4.15: n = 500, m = 2500.
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4.3 Stochastic Contracting Newton Method

Now, let us study the case when the smooth part f of the objective is
represented as a sum of M convex two times continuously-differentiable
components,

f(x) := 1
M

M∑
i=1

fi(x). (4.3.1)

This setting appears in many Machine Learning applications, such as empir-
ical risk minimization. Often, the number M is very big. Thus, it becomes
expensive to evaluate the whole gradient or the Hessian at every iteration
(see the discussion on arithmetical complexity of oracles in Section 1.6).
Hence, stochastic or incremental methods are the methods of choice in this
situation. See [12] for a survey of the first-order incremental methods. The
Newton-type Incremental Method with superlinear local convergence was
proposed in [134]. Local linear rates of stochastic Newton methods were
studied in [85]. Global convergence of sub-sampled Newton schemes, based
on the Damped iterations, and on the Cubic regularization, was established
in [139, 83, 150, 153, 154].

In this section, we develop stochastic variants of the Contracting Newton
Method (3.2.10) suitable for solving the finite-sum minimization problems,
when M is big.

Let us assume for simplicity that E = Rn and the norm ‖ · ‖ is the
standard Euclidean:

‖x‖ =
√

n∑
i=1

(x(i))2.

We denote by D the diameter of the compact convex set domψ:

D = max
x,y∈domψ

‖x− y‖ < +∞.

Let us denote by L0 the Lipschitz constant for our objective:

|f(x)− f(y)| ≤ L0‖x− y‖, x, y ∈ domψ,

and by L1 and L2 the Lipschitz constants on domψ for the gradient and
for the Hessian, respectively (see definition (1.3.3)). Note that all these
constants are well-defined since, by our assumption, the domain is bounded.
For a random element ξ, we denote its expectation by E

[
ξ
]
.

In Section 4.3.1, we study a basic stochastic version of the Contract-
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ing Newton. In Section 4.3.2, we incorporate the variance-reduction for
the stochastic gradients into our scheme, Section 4.3.3 contains numerical
experiments.

4.3.1 Basic Stochastic Scheme
The basic idea of stochastic algorithms is to substitute the true gradients
and Hessians by some random unbiased estimators gk, and Hk, respectively,
with E

[
gk
]

= ∇f(xk) and E
[
Hk

]
= ∇2f(xk).

Let us consider the following general iterations, for solving the composite
optimization problem:

xk+1 ∈ Argmin
y

{
〈gk, y − xk〉+ 1

2 〈Hk(y − xk), y − xk〉

+ γkψ(xk + 1
γk

(y − xk))
}
, k ≥ 0

(4.3.2)

where γk ∈ (0, 1] is a parameter. This is algorithm (3.2.10) with substituted
vector gk and matrix Hk instead of the true gradient and the Hessian.

First, we need to study the convergence of this process, assuming that
gk and Hk are arbitrary. As before, we use a sequence of positive numbers
{ak}k≥1, and set

γk
def= ak+1

Ak+1
, Ak

def=
k∑
i=1

ai.

Lemma 4.3.1. For iterations (4.3.2), we have for all k ≥ 1

F (xk)− F ∗ ≤ Bk
Ak
, (4.3.3)

with
Bk

def= L2D3

2

k−1∑
i=0

a3
i+1
A2
i+1

+ D
k−1∑
i=0

ai+1‖∇f(xi)− gi‖

+ D2
k−1∑
i=0

a2
i+1
Ai+1
‖∇2f(xi)−Hi‖.

Proof. Let us prove by induction the following inequality

AkF (x) ≥ AkF (xk)−Bk, x ∈ domψ. (4.3.4)

It obviously holds for k = 0, and for k ≥ 1 it is equivalent to (4.3.3).
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Assume that (4.3.4) holds for some k ≥ 0, and consider the next step:

Ak+1F (x) = ak+1F (x) +AkF (x)

(4.3.4)
≥ ak+1F (x) +AkF (xk)−Bk

(∗)
≥ Ak+1f

(ak+1x+Akxk
Ak+1

)
+ ak+1ψ(x) +Akψ(xk)−Bk

(∗)
≥ Ak+1

[
f(xk+1) + 〈∇f(xk+1), ak+1x+Akxk

Ak+1
− xk+1〉

]
+ ak+1ψ(x) +Akψ(xk)−Bk,

(4.3.5)

where (∗) stands for convexity of f . Now, let us denote the point

vk+1
def= xk + 1

γk
(xk+1 − xk) ∈ domψ.

Then, the stationary condition for the method step (4.3.2) can be written
as

〈gk +Hk(xk+1 − xk), x− vk+1〉+ ψ(x) ≥ ψ(vk+1), (4.3.6)

for all x ∈ domψ. Therefore,

Ak+1〈∇f(xk+1), ak+1x+Akxk
Ak+1

− xk+1〉+ ak+1ψ(x)

= ak+1
[
〈∇f(xk+1), x− vk+1〉+ ψ(x)

]
= ak+1

[
〈gk +Hk(xk+1 − xk), x− vk+1〉+ ψ(x)

+ 〈∇f(xk)− gk, x− vk+1〉

+ 〈(∇2f(xk)−Hk)(xk+1 − xk), x− vk+1〉

+ 〈∇f(xk+1)−∇f(xk)−∇2f(xk)(xk+1 − xk), x− vk+1〉
]

207



Chapter 4. Inexact and Stochastic Algorithms

By Lipschitz continuity of the Hessian, it holds

‖∇f(xk+1)−∇f(xk)−∇2f(xk)(xk+1 − xk)‖

≤ L2‖xk+1−xk‖2

2 = L2γ
2
k‖vk+1−xk‖2

2 .

(4.3.7)

Hence,

Ak+1〈∇f(xk+1), ak+1x+Akxk
Ak+1

− xk+1〉+ ak+1ψ(x)

(4.3.6),(4.3.7)
≥ ak+1

[
ψ(vk+1)− ‖∇f(xk)− gk‖ · ‖x− vk+1‖

− γk‖∇2f(xk)−Hk‖ · ‖vk+1 − xk‖ · ‖x− vk+1‖

− L2γ
2
k‖vk+1−xk‖2·‖x−vk+1‖

2
]

≥ ak+1ψ(vk+1)− ak+1D‖∇f(xk)− gk‖∗

− a2
k+1D2‖∇2f(xk)−Hk‖

Ak+1
− a3

k+1L2D3

A2
k+1

.

(4.3.8)

Thus, combining all together, and using convexity of ψ, we obtain

Ak+1F (x)
(4.3.5),(4.3.8)

≥ Ak+1f(xk+1) + ak+1ψ(vk+1) +Akψ(xk)−Bk

− ak+1D‖∇f(xk)− gk‖ −
a2
k+1D2‖∇2f(xk)−Hk‖

Ak+1
− a3

k+1L2D3

A2
k+1

≥ Ak+1F (xk+1)−Bk+1.

So, we have (4.3.4) justified for all k ≥ 0.

Now, let us consider the simplest estimation strategy. At iteration k,
we sample uniformly and independently two subsets of indices Sgk , SHk ⊆
{1, . . . ,M}. Their sizes are mg

k

def= |Sgk | and mH
k

def= |SHk |, which are possibly
different. Then, in algorithm (4.3.2), we can use the following random
estimators:

gk = 1
mg
k

∑
i∈Sg

k

∇fi(xk), Hk = 1
mH
k

∑
i∈SH

k

∇2fi(xk). (4.3.9)
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Let us present for this process a result on its global convergence.

Theorem 4.3.2. Let γk := 1−
(

k
k+1
)3 = O

( 1
k

)
. Set

mg
k := 1/γ4

k, mH
k := 1/γ2

k. (4.3.10)

Then, for the iterations {xk}k≥1 of algorithm (4.3.2), based on estimators
(4.3.9), it holds

E
[
F (xk)

]
− F ∗ ≤ O

(
L2D3 +L1D2(1+log(n)) +L0D

k2

)
. (4.3.11)

Proof. Let us fix iteration k ≥ 0. For one uniform random sample i ∈
{1, . . . ,M}, we have

E
[
‖∇f(xk)−∇fi(xk)‖2

]
= E

[
‖∇fi(xk)‖2

]
− ‖∇f(xk)‖2 ≤ L2

0.

Therefore, for the random batch of size mg
k, we obtain

E
[
‖∇f(xk)− gk‖

]
≤

√
E
[
‖∇f(xk)− gk‖2

]
=

√
1

(mg
k
)2 E

[
‖
∑
i∈Sg

k
(∇f(xk)−∇fi(xk))‖2

]
=

√
1

(mg
k
)2

∑
i∈Sg

k
E
[
‖∇f(xk)−∇fi(xk)‖2

]
≤ L0√

mg
k

.

(4.3.12)

More advanced reasoning for matrices (Matrix Bernstein Inequality; see
Chapter 6 in [151]) gives

E
[
‖∇2f(xk)−Hk‖

]
≤ L1

(√
2 log(2n)
mH
k

+ 2 log(2n)
3mH

k

)
≤ L1(3

√
2 log(2n)+2 log(2n))

3
√
mH
k

≤ L1(6+7 log(2n))
6
√
mH
k

.

(4.3.13)
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So, using these estimates together, we have, for every k ≥ 1

E
[
F (xk)

]
− F ∗

(4.3.3)
≤ 1

Ak

(
L2D

3

2

k−1∑
i=0

a3
i+1
A2
i+1

+D
k−1∑
i=0

ai+1E
[
‖∇f(xi)− gi‖

]
+ D2

k−1∑
i=0

a2
i+1
Ai+1

E
[
‖∇2f(xi)−Hi‖

])
(4.3.12),(4.3.13)

≤ 1
Ak

(
L2D

3

2

k−1∑
i=0

a3
i+1
A2
i+1

+ L0D
k−1∑
i=0

ai+1√
mg
i

+ L1D
2(6+7 log(2n))

6

k−1∑
i=0

a2
i+1

Ai+1
√
mH
i

)
(4.3.10)= 1

Ak

(
L2D

3

2 + L0D + L1D
2(6+7 log(2n))

6

) k−1∑
i=0

a3
i+1
A2
i+1
.

Thus, for the choice Ak := k3, we get

E
[
F (xk)

]
− F ∗ ≤ O

(
L2D

3+L1D
2(1+log(n))+L0D
k2

)
. �

Therefore, in order to solve our problem with ε-accuracy in expectation,
E
[
F (xK)

]
− F ∗ ≤ ε, we need to perform K = O

( 1
ε1/2

)
iterations of the

method. In this case, the total number of gradient and Hessian samples
are O

( 1
ε5/2

)
and O

( 1
ε3/2

)
, respectively. It is interesting that we need higher

accuracy for estimating the gradients, which results in a bigger batch size.

4.3.2 Stochastic Variance-Reduced Scheme

To improve this result, we incorporate a simple variance reduction strat-
egy for the gradients. This is a popular technique in stochastic convex
optimization (see [141, 75, 33, 71, 2, 126, 57] and references therein). At
some iterations, we recompute the full gradient. However, during the whole
optimization process this happens logarithmic number of times in total.

Let us denote by π(k) the maximal power of two which is less than or
equal to k:

π(k) def= 2blog2 kc, k > 0, π(0) def= 0.
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The entire scheme looks as follows.

Stochastic Variance-Reduced Contracting Newton

Initialization. Choose x0 ∈ domψ.

Iteration k ≥ 0.

1: Set anchor point zk = xπ(k).

2: Sample random batch Sk ⊆ {1, . . . ,M} of size mk.

3: Compute variance-reduced stochastic gradient
gk = 1

mk

∑
i∈Sk

(
∇fi(xk)−∇fi(zk) +∇f(zk)

)
.

4: Compute stochastic Hessian
Hk = 1

mk

∑
i∈Sk ∇

2fi(xk).

5: Pick up γk ∈ (0, 1].

6: Perform the main step
xk+1 ∈ Argmin

y

{
〈gk, y − xk〉+ 1

2 〈Hk(y − xk), y − xk〉

+ γkψ(xk + 1
γk

(y − xk))
}
.

(4.3.14)

Note that this is just algorithm (4.3.2) with a specific choice of the
random estimators gk and Hk. The following result holds.

Theorem 4.3.3. Let γk = 1−
(

k
k+1
)3 = O( 1

k ). Set batch size

mk = 1/γ2
k. (4.3.15)

Then, for all iterations {xk}k≥1 of algorithm (4.3.14), we have

E
[
F (xk)

]
− F ∗

≤ O
(
L2D3 +L1D2(1+log(n)) +L

1/2
1 D(F (x0)−F∗)

k2

)
.

(4.3.16)
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Proof. Let us consider the following stochastic estimate

gik
def= ∇fi(xk)−∇fi(zk) +∇f(zk),

for a uniform random sample i ∈ {1, . . . ,M}, and a current iterate k ≥ 0.
We denote by x∗ the solution of our problem: F ∗ = F (x∗), stationary
condition for which is

〈∇f(x∗), x− x∗〉+ ψ(x) ≥ ψ(x∗), x ∈ domψ. (4.3.17)

Then, it holds

E
[
‖∇f(xk)− gik‖2

]
= E

[
‖(∇f(xk)−∇f(x∗))

+ (∇fi(zk)−∇fi(x∗)−∇f(zk) +∇f(x∗))

+ (∇fi(x∗)−∇fi(xk))‖2
]

≤ 3E
[
‖∇f(xk)−∇f(x∗)‖2

]
+ 3E

[
‖(∇fi(zk)−∇fi(x∗))− (∇f(zk)−∇f(x∗))‖2

]
+ 3E

[
‖∇fi(xk)−∇fi(x∗)‖2

]
≤ 3

(
E
[
‖∇f(xk)−∇f(x∗)‖2

]
+ E

[
‖∇fi(zk)−∇fi(x∗)‖2

]
+ E

[
‖∇fi(xk)−∇fi(x∗)‖2

])
,

where we used the following simple bounds:

‖a+ b+ c‖2 ≤ 3‖a‖2 + 3‖b‖2 + 3‖c‖2,

E
[
‖ξ −E

[
ξ
]
‖2
]
≤ E

[
‖ξ‖2

]
,

which are valid for any a, b, c ∈ Rn and arbitrary random vector ξ ∈ Rn.

Now, by Lipschitz continuity of the gradients, we have (see Theorem 2.1.5
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in [117]):

‖∇f(xk)−∇f(x∗)‖2 ≤ 2L1
(
f(xk)− f(x∗)− 〈∇f(x∗), xk − x∗〉

)
(4.3.17)
≤ 2L1

(
F (xk)− F ∗

)
.

The same holds for the random sample i, for arbitrary fixed x ∈ domψ

Ei

[
‖∇fi(x)−∇fi(x∗)‖2

]
≤ 2L1Ei

[
fi(x)− fi(x∗)− 〈∇fi(x∗), x− x∗〉

]
= 2L1

(
f(x)− f(x∗)− 〈∇f(x∗), x− x∗〉

)
(4.3.17)
≤ 2L1

(
F (x)− F ∗).

Thus, we obtain

E
[
‖∇f(xk)− gik‖2

]
≤ 12L1E

[
F (xk)− F ∗

]
+ 6L1E

[
F (zk)− F ∗

]
.

(4.3.18)

Consequently, for the random batch

gk
def= 1

mk

∑
i∈Sk g

i
k,

we have (compare with (4.3.12))

E
[
‖∇f(xk)− gk‖

]
≤

√
1

(mk)2

∑
i∈Sk E

[
‖∇f(xk)− gik‖2

]
(4.3.18)
≤

√
6L1
mk

(
2E
[
F (xk)− F ∗

]
+ E

[
F (zk)− F ∗

])
≤

√
12L1
mk

E
[
F (xk)− F ∗

]
+
√

6L1
mk

E
[
F (zk)− F ∗

]
.

(4.3.19)

So, using the variance reduction for the gradients, and the basic estimate
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for the Hessians, we have, for every k ≥ 1

E
[
F (xk)

]
− F ∗

(4.3.3),(4.3.19),(4.3.13)
≤ 1

Ak

(
L2D3

2

k−1∑
i=0

a3
i+1
A2
i+1

+ D
√

6L1
k−1∑
i=0

ai+1√
mi

(√
2E
[
F (xi)− F ∗

]
+
√

E
[
F (zi)− F ∗

] )
+ L1D2(6+7 log(2n))

6

k−1∑
i=0

a2
i+1

Ai+1
√
mi

)
(4.3.15)= 1

Ak

([
3L2D3+L1D2(6+7 log(2n))

6

] k−1∑
i=0

a3
i+1
A2
i+1

+ D
√

6L1
k−1∑
i=0

a2
i+1
Ai+1

(√
2E
[
F (xi)− F ∗

]
+
√

E
[
F (zi)− F ∗

] ))
.

Now, let us set Ai+1 := (i+ 1)3, and thus ai+1 := (i+ 1)3 − i3 ≤ 3(i+ 1)2,
so we have

E
[
F (xk)

]
− F ∗ ≤ α+ β(

√
2+1)(F (x0)−F∗)

k2

+ β
k3

k−1∑
i=1

(
(i+ 1)

(√
2E
[
F (xi)− F ∗

]
+
√

E
[
F (zi)− F ∗

]))
,

(4.3.20)

where

α
def= 27 ·

[
3L2D3+L1D2(6+7 log(2n))

6

]
, β

def= 9 ·D
√

6L1.

We are going to prove by induction, for every k ≥ 1

E
[
F (xk)

]
− F ∗ ≤ c

k2 , (4.3.21)

with

c
def=

(
4β +

√
α+ 3β(F (x0)− F ∗) + 16β2

)2
≤ 74β2 + 2α+ 6β(F (x0)− F ∗)

= O
(
L2D3 + L1D2(1 + log(n)) + L

1/2
1 D(F (x0)− F ∗)

)
.

(4.3.22)
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Hence, if (4.3.21) is true, then we essentially obtain the claim of the theorem.
For k = 1, (4.3.21) follows directly from (4.3.20). Assume that (4.3.21) holds
for all 1 ≤ i ≤ k, and consider iteration k + 1:

E
[
F (xk+1)

]
− F ∗

(4.3.20),(4.3.21)
≤ α+ β(

√
2+1)(F (x0)−F∗)

k2 + β
k3

k∑
i=1

(
(i+ 1)

(√
2c
i +

√
c

π(i)

))
(∗)
≤ α+ β(

√
2+1)(F (x0)−F∗)

k2 + β
√
c

k3

k∑
i=1

(
(i+ 1)

(
2
√

2 + 4
i+1

))
= α+ (

√
2+1)β(F (x0)−F∗) + (2

√
2+4)β

√
c

k2

≤ α+ 3β(F (x0)−F∗) + 8β
√
c

k2
(4.3.22)= c

k2 ,

where in (∗) we have used two simple bounds: i ≤ 2π(i), and i + 1 ≤ 2i,
valid for all i ≥ 1.

It is thanks to the variance reduction that we can use the same batch
size for both estimators now. To solve the problem with ε-accuracy in
expectation, we need K = O

( 1
ε1/2

)
iterations of the method. And the total

number of gradient and Hessian samples during these iterations is O
( 1
ε3/2

)
.

215



Chapter 4. Inexact and Stochastic Algorithms

4.3.3 Experiments
Let us demonstrate computational results for the problem of training Logis-
tic Regression model, regularized by `2-ball constraints. Thus, the smooth
part of the objective has the finite-sum representation

f(x) := 1
M

M∑
i=1

fi(x),

each component is fi(x) := log(1 + exp(〈ai, x〉)). The composite part is the
indicator of a Euclidean ball,

ψ(x) :=

0, ‖x‖2 :=
(∑n

i=1 |x(i)|2
)1/2

≤ D
2 ,

+∞, else.

Diameter D is a regularization parameter. Vectors {ai : ai ∈ Rn}Mi=1 are
determined by the dataset8.

We compare the basic stochastic version of our method, using estima-
tors (4.3.9) — SNewton, the method with the variance reduction (algo-
rithm (4.3.14)) — SVRNewton, and first-order algorithms (with constant
step-size, tuned for each problem): SGD and SVRG [75].

The results are shown in Figures 4.16 – 4.19.
We see that using the variance reduction strategy significantly improves

the convergence for both first-order and second-order stochastic optimiza-
tion methods. Second-order schemes usually outperform first-order meth-
ods, in terms of the number of iterations, and the number of epochs. Despite
the fact that the Newton step is more expensive, in many situations we see
superiority of the second-order schemes in terms of the total computational
time. 9

We can conclude that the second-order methods are preferable for solv-
ing ill-conditioned problems of small and medium dimension. A significant
advantage of our stochastic second-order schemes is that they are free from
any unknown parameters, while having both theoretical guarantees of fast
global convergence and good empirical performance.

8https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
9CPU time was evaluated on a machine with Intel Core i5 CPU, 1.6GHz; 8 GB

RAM. All methods have been implemented in C++. Operation system: macOS 10.15.
Compiler: Clang 12.0.0. The source code can be found at https://github.com/doikov/
contracting-newton/
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Figure 4.16: Logistic regression, covtype (M = 581012, n = 54).
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Figure 4.17: Logistic regression, mnist (M = 60000, n = 780).
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Figure 4.18: Logistic regression, YearPredictionMSD (M = 463715, n = 90).
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Figure 4.19: Logistic regression, HIGGS2m (M = 2 · 106, n = 28).
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Conclusions

5.1 Summary

In this thesis, we presented several new results on the theory of second-order
and tensor methods, solving convex minimization problems.

Firstly, we studied the global and local performance of the prox-type
algorithms that are based on the explicit regularization of Taylor’s polyno-
mial by a power of the Euclidean norm. We demonstrated that the problem
classes with uniformly convex objectives are among the most favourable to
the methods. They serve as an example of nondegenerate problems, and it
is possible to introduce the high-order condition number, which is the main
factor in the global complexity of these algorithms.

For the cubic regularization of Newton’s method with adaptive estima-
tion of the parameter, we established the fast global linear rate of conver-
gence for uniformly convex functions with Hölder continuous Hessian. The
method automatically achieves the best complexity estimate among these
problem classes, without knowledge of any constants. As a consequence of
this result, we proved that the global rate of the Cubic Newton is always
better than that of the gradient method on the class of strongly convex
functions with bounded second derivative.

For the high-order tensor methods, we established the rate of superlinear
local convergence which is faster than that of the classical Newton’s method.
Moreover, we demonstrated that increasing the order of the method, we may
extend the degree of uniform convexity for the objective. This justifies a
reasonable belief that the methods of higher order have to be more powerful.
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Secondly, we investigated the possibility of using the contraction of the
objective as a natural implicit regularizer, for solving the convex problems
with bounded domain. It appears that the contraction principle is used
in the core of the conditional gradient methods (Frank-Wolfe algorithm).
We showed that this idea can be successfully employed for constructing the
second- and high-order algorithms as well.

Thus, we developed a new family of affine-invariant tensor methods
equipped with the global complexity guarantees. We proved that the meth-
ods of higher order possess a faster rate of convergence, while all the con-
stants in the complexity bounds do not depend on any particular norm or
any choice of the coordinate system.

As particular cases, we obtained affine-invariant characterization of the
first-order conditional gradient method, and developed new affine-invariant
second-order algorithm called Contracting Newton method. The latter one
has the same fast global rate as the cubically regularized Newton’s method
for convex functions with Lipschitz continuous Hessian.

Then, we demonstrated that the contracting-point and proximal-point
regularization ideas are complementary to each other. Combining them
together, it is possible to construct accelerated algorithms.

Finally, we addressed the questions of efficient implementation of the
second- and high-order methods. We suggested to describe approximate
solution of the subproblem in terms of the residual in function value, and
proposed different strategies for choosing the inner accuracy, which are dy-
namic (changing with iterations). We proved that the inexact methods with
these strategies achieve the same global convergence rate as in the error-free
case.

For the Contracting Newton method, we developed the basic stochastic
version, and the version with the variance reduction, which are suitable for
solving modern huge-scale problems. We were able to reach the fast global
rate of the full method, when the batch size for stochastic estimation of the
gradient and the Hessian is gradually increasing with iterations.

Numerical experiments demonstrated that the new methods are com-
petitive with the contemporary first-order algorithms in terms of the total
computational time.
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5.2 Directions for Further Research
Let us indicate some possible directions for the future research on the theory
of second-order and high-order optimization methods.

Moving beyond the Lipschitz continuity. Most of the methods that
we analysed in our work were built under the assumption of the bound-
ness of certain derivatives. Note that in many cases, such a condition on
the target objective naturally prescribes the method we use. At the same
time, it is clear that there are several possible options here. For exam-
ple, for second-order methods, we can assume that the Hessian is Hölder
continuous (with respect to some fixed global norm). Or, we can bound
the maximum of the variation of third derivative over the given compact
convex set (see Section 3.1.2). Alternatively, one can use some local norm
induced by the Hessian of the objective (which leads to the definition of
self-concordant functions [123]). For the first-order methods, we also have
a recently developed notion of relative smoothness [152, 7, 95]. It seems to
be an interesting theoretical questions, whether we can unify some of these
assumptions on the derivatives and move beyond them.

Lower complexity bounds and optimal methods. We presented a
general framework of Contracting-Point methods, which provides a system-
atic way of constructing high-order algorithms. In the implementation of
our conceptual scheme, it is enough to use just one step of the Taylor ap-
proximation. This gives the global convergence with the same rate as that
of the basic high-order Proximal-Point methods [120]. It is known that the
latter ones can be accelerated, when using the Euclidean norm. Addition-
ally, it has been revealed that one step of the third-order Proximal-Point
scheme might be implemented by using only the second-order oracle for the
initial objective. This makes the whole picture more complicated, since we
do not have any more one-to-one correspondence between the order of the
method and the order of the derivative which is assumed to be Lipschitz
continuous. Filling the gaps in this picture, especially related to the optimal
methods, is an important direction for research.

Consequences for the theory of quasi-Newton methods. The cur-
rent theory of quasi-Newton methods is mainly dedicated to their local
behaviour [138]. Certainly, it would be very interesting to see any combi-
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nations of the globally convergent second-order schemes with some efficient
strategies for the Hessian approximation.

Implementation of high-order tensor methods. First of all, it would
be interesting to understand if we can implement third-order Contracting-
Point Tensor Method with a reasonable amount of computations at each
step. Note that absence of the explicit regularizer, as in the prox-type
methods, makes the subproblem nonconvex and more difficult to solve.

Then, it remains to be an open problem — how to implement the Tensor
Method when p ≥ 4, by possibly taking into account the structure of convex
polynomials.

Moreover, it is well known that using adaptive estimation of the Lipschitz
constants helps to improve practical performance of the methods. We see it
as additional challenge to provide high-order Tensor Methods with efficient
line search strategies which would ensure convexity of the model.

Finally, the most efficient implementation of high-order methods must
take into account modern computing architectures, which include multi-core
and distributed parallel systems. We believe that some of the breakthroughs
in the development of second- and high-order optimization methods can be
achieved by investigating this direction.
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Appendix

A Maximization of Multilinear Forms

Let us state some simple auxiliary facts about maximization of multilinear
symmetric forms. For a fixed p ≥ 1, let us consider (p+1)-linear symmetric
form A. For a set of vectors h1, . . . , hp+1 ∈ E, we have

A[h1, . . . , hp+1] ∈ R.

For two vectors u, v ∈ E and integers i, j ≥ 0 such that i + j = p + 1, we
use the following shorter notation:

A[u]i[v]j def= A[u, . . . , u︸ ︷︷ ︸
i times

, v, . . . , v︸ ︷︷ ︸
j times

].

Let us fix arbitrary compact convex set S ⊂ E. We are interested to bound
the variation of A over two vectors from S, by that over the only one vector:

sup
u,v∈S

|A[u]p[v]| ≤ Cp sup
h∈S
|A[h]p+1|, (A.1)

for some constant Cp. Note, that if S is a ball in the Euclidean norm,
then Cp = 1, and the values of both supremums are equal (see Appendix 1
in [123], and Section 2.3 in [103]). In what follows, our aim is to estimate
the value of Cp for arbitrary S. Namely, we establish the following bound.

Proposition A.1. For any compact convex set S, (A.1) holds with

Cp = (p+1)p+1+pp+1+1
(p+1)! ≤ 2(p+1)p

p! . (A.2)

Proof. For a pair of integers n, k ≥ 0, let us denote by
(
n
k

)
the binomial
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coefficients, given by the formula(
n
k

) def= n(n−1)···(n−k+1)
k! ,

and by
{
n
k

}
we denote the Stirling numbers of the second kind. By definition,{

n
k

}
is equal to the number of ways to partition a set of n objects into k

nonempty subsets. The following important identity holds (see, for example,
[59]):

kn = k!
k∑
r=1

{nr}
(k−r)! , n ≥ 1. (A.3)

Note also, that
{
n
n

}
= 1, and

{
n
k

}
= 0, for k > n.

Now, let us fix arbitrary vectors u, v ∈ S, and consider the set of their
convex combinations hi = αiu+(1−αi)v ∈ S for some αi ∈ (0, 1), 1 ≤ i ≤ p.
The binomial theorem yields the system of equations, for 1 ≤ i ≤ p

A[hi]p+1 =
p+1∑
j=0

(
p+1
j

)
αji (1− αi)p+1−jA[u]j [v]p+1−j . (A.4)

For the choice αi = i
i+1 , we have 1− αi = 1

i+1 , and

αji (1− αi)p+1−j = ij

(i+1)p+1 .

Therefore, introducing a vector x ∈ Rp,

x(j) ≡
(
p+1
j

)
A[u]j [v]p+1−j , 1 ≤ j ≤ p,

from (A.4) we obtain the linear system Bx = c with matrix

B(i,j) ≡ ij , 1 ≤ i, j ≤ p, (A.5)

and the right hand side vector

c(i) ≡ (i+ 1)p+1(A[hi]p+1 − (1− αi)p+1A[v]p+1

− αp+1
i A[u]p+1), 1 ≤ i ≤ p.

(A.6)
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The matrix given by (A.5) looks as follows

B =


1 1 1 . . . 1
2 22 23 . . . 2p
3 32 33 . . . 3p
...

...
...

. . .
...

p p2 p3 . . . pp

 .

This structure is similar to that one of the Vandermonde matrix. By the
Gaussian elimination process we can build a sequence of matrices

B = B1 7→ B2 7→ . . . 7→ Bp,

such that Bp is upper triangular, and the corresponding sequence of the
right hand side vectors

c = c1 7→ c2 7→ . . . 7→ cp,

having the same solution x as the initial system:

Btx = ct, 1 ≤ t ≤ p.

Then, the last component of the solution can be easily found:

(p+ 1)A[u]p[v] = x(p) = c(p)
p

B
(p,p)
p

, (A.7)

from which we may obtain the required bound for the left hand side of (A.1).
Thus, we are interested to investigate the elements of Bp and cp.

Let us prove by induction, that for every 1 ≤ t ≤ p, it holds

B
(i,j)
t =


i!
{
j
i

}
if i ≤ t;

i!
i∑
r=t

{jr}
(i−r)! otherwise.

(A.8)

For t = 1, (A.8) follows from (A.3), and this is the base of the induction. At
step t of the Gaussian elimination, we have the matrix Bt. First, we freeze
its t-th row for all the following matrices:

B
(t,j)
t = B

(t,j)
t+1 = B

(t,j)
t+2 = . . . = B

(t,j)
p = t!

{
j
t

}
, 1 ≤ j ≤ p.
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Then, we subtract this row from all the rows located below, scaled by an
appropriate factor, for t < i ≤ p:

B
(i,j)
t+1 = B

(i,j)
t − B

(i,t)
t

B
(t,t)
t

·B(t,j)
t , 1 ≤ j ≤ p.

Note, that B(t,t)
t = t! and B(i,t)

t = i!
(i−t)! . Therefore, we obtain

B
(i,j)
t+1 = i!

i∑
r=t

{jr}
(i−r)! −

i!{jt}
(i−t)! = i!

i∑
r=t+1

{jr}
(i−r)! , 1 ≤ j ≤ p,

and this is (A.8) for the next step. Hence (A.8) is established by induction
for all 1 ≤ t ≤ p.

Similarly, we have the update rules for the right hand sides:

c
(t)
t = c

(t)
t+1 = . . . = c

(t)
p ,

and for t < i ≤ p:

c
(i)
t+1 = c

(i)
t −

B
(i,t)
t

Bt,tt
c
(t)
t = c

(i)
t −

(
i
t

)
c
(t)
t

= c
(i)
t−1 −

(
i
t−1
)
c
(t−1)
t−1 −

(
i
t

)
c
(t)
t = . . .

= c
(i)
1 −

t∑
r=1

(
i
r

)
c
(r)
r .

Therefore, we have a recurrence:

c
(i)
p = c

(i)
1 −

i−1∑
r=1

(
i
r

)
c
(r)
p , 1 ≤ i ≤ p. (A.9)

From (A.9) we obtain an explicit expression for cp using only the initial
values:

c
(i)
p =

i∑
j=1

(−1)i−j
(
i
j

)
c
(j)
1 , 1 ≤ i ≤ p. (A.10)

Indeed, (A.10) follows directly from (A.9) for i = 1. Assume by induction
that (A.10) holds for all 1 ≤ i ≤ n, for some n. Then, for the next index,
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we have

c
(n+1)
p

(A.9)= c
(n+1)
1 −

n∑
r=1

(
n+1
r

)
c
(r)
p

(A.10)= c
(n+1)
1 −

n∑
r=1

r∑
j=1

(−1)r−j
(
n+1
r

)(
r
j

)
c
(j)
1

= c
(n+1)
1 −

n∑
j=1

(
n∑
r=j

(−1)r−j
(
n+1
r

)(
r
j

))
c
(j)
1

= c
(n+1)
1 +

n∑
j=1

(−1)n+1−j(n+1
j

)
c
(j)
1 ,

where the last equation follows from simple observations:

n∑
r=j

(−1)r−j
(
n+1
r

)(
r
j

)
=

n∑
r=j

(−1)r−j (n+1)! r!
r! (n+1−r)! j! (r−j)!

=
(
n+1
j

) n∑
r=j

(−1)r−j
(
n+1−j
r−j

)

=
(
n+1
j

) n−j∑
l=0

(−1)l
(
n+1−j

l

)
=

(
n+1
j

)(
(1− 1)n+1−j − (−1)n+1−j

)
= (−1)n−j

(
n+1
j

)
.

Hence (A.10) is established by induction for all 1 ≤ i ≤ p.

Let us denote by V the supremum from the right hand side of (A.1):

V def= sup
h∈S
|A[h]p+1|.

Then, in view of (A.6), we have

|c(j)1 | = |c(j)| ≤ ((p+ 1)p+1 + pp+1 + 1)V, 1 ≤ j ≤ p, (A.11)
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and, consequently

|A[u]p[v]| (A.7),(A.8)= |c(p)
p |

(p+1)!
(A.10)= 1

(p+1)!

∣∣∣ p∑
j=1

(−1)p−j
(
p
j

)
c
(j)
1

∣∣∣
(A.11)
≤ ((p+1)p+1+pp+1+1)V

(p+1)!

∣∣∣ p∑
j=1

(−1)p−j
(
p
j

)∣∣∣ = CpV.

Since u, v ∈ S are arbitrary vectors, we have (A.2) established.
Let us consider the most important cases, when p = 1 and p = 2.

Corollary A.2. For any symmetric bilinear form A : E× E→ R and any
compact convex set S ⊂ E, it holds

sup
u,v∈S

|A[u, v]| ≤ 3 sup
h∈S
|A[h, h]|. (A.12)

Corollary A.3. For any symmetric trilinear form A : E×E×E→ R and
any compact convex set S ⊂ E, it holds

sup
u,v∈S

|A[u, u, v]| ≤ 6 sup
h∈S
|A[h, h, h]|. (A.13)

It appears that the bound in (A.12) is tight.

Example A.4. Consider the following symmetric bilinear form on two-
dimensional space E = R2:

A[u, v] = u(1)v(1) − 2u(2)v(2), u, v ∈ R2,

and let
S =

{
x ∈ R2 : x(1) = 1, x(2) ∈ [−1, 1]

}
.

Then,
sup
u,v∈S

|A[u, v]| = sup
α,β∈[−1,1]

|1− 2αβ| = 3.

However,

sup
h∈S
|A[h, h]| = sup

α∈[0,1]
|1− 2α| = 1. �

If it happens that our bilinear form is positive semidefinite (e.g. it is
determined by the Hessian of a convex function), the constant in (A.12) can
be improved to be 1, so the both supremums are equal.
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Proposition A.5. Let symmetric bilinear form A : E× E→ R be positive
semidefinite:

A[h, h] ≥ 0, h ∈ E.

Then, for any set S ⊂ E, it holds

sup
u,v∈S

|A[u, v]| = sup
h∈S

A[h, h].

Proof. Indeed, by the Eigenvalue Decomposition, for some r ≥ 0, there
exists a set of linear forms a1, . . . , ar ∈ E∗ and positive numbers λ1, . . . , λr >

0 such that

A[u, v] =
r∑
i=1

λi〈ai, u〉〈ai, v〉, u, v ∈ S.

Therefore, using Cauchy-Bunyakovsky-Schwarz inequality, we get

|A[u, v]| ≤
( r∑
i=1

λi〈ai, u〉2
)1/2( r∑

i=1
λi〈ai, v〉2

)1/2

=
(
A[u, u]

)1/2(
A[v, v]

)1/2
≤ sup

h∈S
A[h, h]. �
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